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Abstract. This paper studies a New-Keynesian model in which monetary policy

may switch between regimes. We derive sufficient conditions for indeterminacy that

are easy to implement and we show that the necessary and sufficient condition

for determinacy, provided by Davig and Leeper (2005, 2006b), is necessary but not

sufficient. More importantly, we use a two-regime model to show that indeterminacy

in a passive regime may spill over to an active regime, no matter how active the

latter regime is. As a result, a passive monetary policy is more damaging than has

been previously thought. Our results imply that the propagation of shocks in an

active regime, such as that of the Federal Reserve in the post-1982 period, may be

substantially affected by the possibility of a return to a passive regime of the kind

that was followed in the 1960s and 1970s.

I. Introduction

The basic new-Keynesian model (NK) consists of a forward-looking IS curve, an

expectations-augmented Phillips curve and a policy rule, in which the interest rate

responds to current values of inflation and output. This model is at the core of a

wide class of dynamic stochastic general equilibrium (DSGE) models currently in use

for policy analysis in both academia and central banks.1 A monetary policy rule that

directs the policy-maker to respond to inflation by raising the interest rate less than

one-for-one in response to an increase in inflation is said to be passive and a rule that

directs the central bank to raise the interest rate more than one-for-one is said to be

active (Leeper, 1991). A central bank that adopts an active rule is said to follow the

Taylor principle after work by John Taylor (1993) who argued that a simple rule of

this kind is a good characterization of actual central bank policy. In the basic NK

model, passive policies lead to the existence of indeterminate equilibria in the sense

that arbitrarily close to one equilibrium there is another one.
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It is widely believed that the presence of indeterminacy is undesirable not only

because it permits the existence of non-fundamental shocks but also because it ampli-

fies the persistence and volatility of the equilibrium paths of inflation, interest rates,

and output in response to fundamental shocks.2 Clarida, Galí, and Gertler (2000),

Lubik and Schorfheide (2004), and Boivin and Giannoni (2006) estimate central bank

policy rules for the U.S. economy for the period from 1960 through 1996. Their es-

timates show that macroeconomic volatility has been much lower in the post-1982

period than in the pre-1980 period and they attribute this reduction in volatility to

the switch from a passive monetary policy, that implies indeterminacy, to an active

policy that implements the unique equilibrium.

Motivated by this empirical work, Davig and Leeper (2005, 2006b, DL) extend the

basic NK model by removing the assumption that a policy rule must be fixed forever.

They study two policy regimes, one active in which policy is chosen by an inflation

hawk and the other passive in which it is chosen by an inflation dove. DL allow

the coefficients of the Taylor rule to vary stochastically across regimes according to

a Markov-switching process and, within this Markov-switching NK model (MSNK),

they assume that the inflation dove chooses a policy that would lead to indeterminacy

if the economy were to remain forever in the passive regime and the inflation hawk

chooses a policy that would lead to determinacy under a permanently active regime.3

DL provide a necessary and sufficient condition for uniqueness of equilibrium of the

MSNK model and they show that, for this model, the parameter region of determinate

equilibria may be considerably larger than the union of the determinacy regions of

the two separate NK models where agents do not take account of the probability of

future regime change. In the MSNK model, if the passive regime is relatively short-

lived and/or if the inflation hawk follows a sufficiently active policy, expectations

about future regime change may induce the passive regime to become determinate.

This effect, referred to by DL as a cross-regime spillover, occurs because rational

agents take account of the probability of future regime change when forming their

expectations.

Throughout the paper we maintain the same assumptions as DL. Specifically, we

assume Ricardian fiscal policy and consider only bounded equilibria. Even with these

qualifications, the MSNK model is different from the basic NK model in important

2For a more detailed exposition of this argument see Woodford (2003, page 88).
3Economic arguments for modelling policy changes in a probabilistic manner were first put forth

by Sims (1982) and by Cooley, LeRoy, and Raymon (1984). These authors argued that once a policy

regime has changed, the rational public will expect such shifts to occur again in the future and will

form a probability distribution over possible regime change. More recently, Leeper and Zha (2003)

have drawn out implications of this way of thinking for practical monetary policy.



MARKOV-SWITCHING NEW-KEYNESIAN MODEL 3

ways since its determinacy and indeterminacy properties depend not only on parame-

ters that describe how policy makers act in any given regime, but also on parameters

that describe the probabilities of regime change. We would like to explain the equi-

librium characteristics in terms of these underlying parameters and, in this paper, we

make four significant contributions to this goal.

First, we derive a wide class of sufficient conditions for indeterminacy of the MSNK

model that are straightforward to check in practice and that could potentially be used

to assist a central banker to form policies that eliminate expectations-driven equilib-

ria. Second, we prove that Davig and Leeper’s condition, when used for identifying

indeterminacy, is a special case of our general sufficient conditions. Moreover, we

show that their condition is necessary but not sufficient to ensure local uniqueness.4

Third, we provide a calibrated example of an indeterminate equilibrium in which

passive monetary policy spills over into the active regime and both regimes are inde-

terminate.5 This example is based on Lubik and Schorfheide’s (2004) estimates and

it is disturbing since it suggests that the U.S. economy may be in, or close to, the

indeterminacy regime in practice. Finally, we show that if the probability of staying

in the passive regime is sufficiently high or if policy in this regime is sufficiently pas-

sive, there may be nothing the inflation hawk can do to prevent indeterminacy even

in the active regime. This new result implies that the mere existence of a sufficiently

passive regime makes the effects of an inflation dove much more damaging than has

been previously thought.

The rest of our paper is organized as follows. In Section II we present the new-

Keynesian model with regime switching. Section III discusses a claim of Davig and

Leeper who provide a necessary and sufficient condition for the equilibrium of a

model of this type to be unique. We use a calibrated example of the model to

illustrate that their condition produces puzzling results. These results suggest the

DL condition is not sufficient to rule out (local) nonuniqueness and in Section IV

we substantiate this conjecture by providing a wider class of sufficient conditions for

indeterminacy that applies to a broader class of Markov switching DSGE models of

which the NK model is a member. In Section V we apply our theorem to a calibrated

model of the U.S. economy using parameter values taken from the empirical work

of Lubik and Schorfheide (2004) and we show that the equilibrium of the calibrated

model is indeterminate and hence there may be sunspot equilibria in both the passive

and the active regime. Section VI provides more examples in which once again there

is a sunspot equilibrium in both the active and in the passive regime. Most of the

examples illustrate a powerful implication from one of the corollaries of our main

4See Galí (2006) for a similar point.
5Previous work by Farmer, Waggoner, and Zha (2006a) gives an example where indeterminacy, if

it exists, occurs only in the passive regime.
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theorem. They differ from the example of Section V by demonstrating that if the

inflation dove is sufficiently passive, there may be no feasible action that can be taken

by the inflation hawk to restore determinacy of equilibrium. Section VII summarizes

our results and makes some suggestions for extensions.

II. The Model

We consider the new-Keynesian DSGE model estimated by Lubik and Schorfheide

(2004) and analyzed by Davig and Leeper. This model is described by following

equations,

AS curve πt = βEtπt+1 + κxt + uS
t , (1)

IS curve xt = Etxt+1 − σ−1(it − Etπt+1) + uD
t , (2)

Policy rule it = αst
πt + γst

xt, (3)

where xt is output, πt is inflation, it is the nominal interest rate, uD
t is an aggregate

demand shock, and uS
t is an aggregate supply shock. Following DL, we measure the

variables πt and it as percentage deviations from their steady state values and xt as

the deviation of output from its trend path.

The private sector block, consisting of Equations (1) and (2), has three regime-

independent parameters, σ, β and κ. The parameter σ represents the intertemporal

elasticity of substitution, β is the discount factor of the representative household, and

κ is the slope of the Phillips curve. Uncertain monetary policy is represented by Eq

(3), the policy rule. This equation has two regime-dependent parameters (αst
and

γst
) that capture the degree to which monetary policy is active or passive. We follow

DL and assume that st follows an exogenous Markov process with transition matrix

P = [pij]. The element pij represents the probability that st = j given st−1 = i for

i, j ∈ {1, . . . h} where h is the number of regimes. For all examples considered in

the paper, we focus on h = 2 where monetary policy is active in the first regime and

passive in the second regime.

To write the new-Keynesian model in a compact form, we substitute Eq (3) into

Eq (2). Rearranging the terms in Eqs (1)–(2), the model can be written as

Fst
yt = HEtyt+1 + ut, (4)

where

yt =

[

πt

xt

]

, ut =

[

uS
t

uD
t

]

,

Fst
=

[

1 −κ

σ−1αst
1 + σ−1γst

]

, H =

[

β 0

σ−1 1

]

.
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The remainder of the paper is based on this MSNK model and our examples in

Sections V and VI use the model to make a number of points. The sufficiency theorem

of Section IV is more general and allows for h regimes and n equations in each regime.

III. Some Puzzling Results

A key policy question is: Under what condition is the equilibrium of the MSNK

model (locally) non-unique in the sense that arbitrarily close to it there is another

one? This question is at the heart of our subject because the design of a good policy

depends on it. By avoiding policies that lead to locally non-unique equilibria, a

policy maker may hope to reduce the variance and persistence of output and inflation.

Davig and Leeper (2005, 2006b) claim to give an answer to our question by providing

a necessary and sufficient condition for uniqueness (and hence also for nonuniqueness)

of equilibrium in the MSNK model represented by Eq (4). They refer to this condition

as the “Long-Run Taylor Principle”. In the rest of this section we review the DL claim

and demonstrate that their claim has puzzling implications.6

III.1. The DL necessary and sufficient condition. The DL approach begins by

expressing the conditional expectations Etπt+1 and Etxt+1 in Eq (4) as follows7

Etπt+1 = pst1Etπ1t+1 + pst2Etπ2t+1, (5)

Etxt+1 = pst1Etx1t+1 + pst2Etx2t+1, (6)

where π1t, π2t, x1t, and x2t are newly introduced random variables such that πit = πt

and xit = πt when st = i for i = 1, 2. Up to this point π1t and x1t have not been

defined when st = 2 and π2t and x2t have not been defined when st = 1. Nonetheless,

DL substitute Eqs (5) and (6) into the model, Eq (4), and they express each of the

original two equations as a pair of equations in the four endogenous random variables

π1t, π2t, x1t, and x2t. This procedure leads to the following expanded linear system:








1 0 −κ 0

0 1 0 −κ

σ−1α1 0 1 + σ−1γ1 0

0 σ−1α2 0 1 + σ−1γ2








︸ ︷︷ ︸

B








π1t

π2t

x1t

x2t








=

6DL’s paper is part of a growing literature on Markov-switching rational expectations models

that includes papers by Andolfatto and Gomme (2003), Leeper and Zha (2003), Schorfheide (2005),

Svensson and Williams (2005), Farmer, Waggoner, and Zha (2006b), and Davig and Leeper (2006a).
7For complete details, see Appendix B in Davig and Leeper (2005, 2006b). For an analysis of why

these expressions are problematic, see Appendix A at the end of our paper.
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βp11 βp12 0 0

βp21 βp22 0 0

σ−1p11 σ−1p12 p11 p12

σ−1p21 σ−1p22 p21 p22








︸ ︷︷ ︸

A








Etπ1t+1

Etπ2t+1

Etx1t+1

Etx2t+1








+








uS
t

uS
t

uD
t

uD
t








. (7)

Computing a uniqueness condition for this linear rational expectations system is a

standard problem (see, for example, Sims (2002); Lubik and Schorfheide (2003)) and

DL correctly state that a necessary and sufficient condition for determinacy of the

equilibrium in Eq (7) is that all the generalized eigenvalues of (B,A) lie inside the

unit circle. However, this condition is not the same as finding a unique bounded

equilibrium to the original model represented by Eq (4).8 Using the linear system,

Eq (7), DL make the following claim.

Claim 1. A necessary and sufficient condition for the MSNK model, Eq (4), to have a

unique bounded equilibrium is that all the generalized eigenvalues of (B,A) lie inside

the unit circle.

Using Claim 1, DL provide various determinacy regions for the MSNK model and

reinterpret Lubik and Schorfheide (2004)’s empirical work in light of these regions.

In Section VI, we will discuss some of their results in more detail.

III.2. An implication of the DL condition. In this subsection we provide an

example of the NK model to illustrate a puzzling implication of the DL claim. Our

example suggests the conjecture that their condition is not sufficient to ensure unique-

ness of the equilibrium, a conjecture that we prove in Section IV.

Consider the NK model with the parameter values reported in Table 1. All of these

numbers are within the parameter space considered in the existing literature. They

imply that the first regime is active and has a unique equilibrium when treated in

isolation and the second regime is passive and indeterminate.

Private Sector Regime 1 Regime 2 Trans Prob

β σ κ α1 γ1 α2 γ2 p22

0.99 2.84 0.3 3.6 0.3 0.7 0.1 0.9

Table 1. Parameter Values for a NK Economy

8In the special case of the Fisherian model, for which n = 1, the DL condition can be supplemented

by the restriction that the scalar quantities F−1

st
H are non-negative to provide a correct set of

necessary and sufficient conditions for local uniqueness. This does not imply, even for this special

case, that Eqs (7) and (4) equivalent.
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For these parameter values, monetary policy reacts strongly to inflation in the

active regime (α1 = 3.6). Since the passive regime is persistent (p22 = 0.9), it seems

likely that if the active regime is short-lived, the model will be indeterminate. This

conjecture is supported by applying DL’s necessary and sufficient condition which

indicates that indeterminacy occurs if 0 < p11 ≤ 0.57 since for these values of p11, at

least one of the generalized eigenvalues of (B,A) lies outside the unit circle.

The logic of the DL argument implies that if the active regime is persistent enough,

cross-regime spillovers may cause the equilibrium to be unique. The economic in-

tuition for this switch to determinacy is that agents in the passive regime take into

account the probability that monetary policy will become active. As DL argue persua-

sively, the more persistent is the active regime, the more likely will be the occurrence

of cross-regime spillovers working through expectations-formation effects.

Equilibrium characteristics indeterminacy determinacy indeterminacy

p11 (Prob of active regime) (0, 0.57] [0.58, 0.86] [0.87, 1.0]

Table 2. Misleading spillovers implied by the DL condition. As the

active regime becomes progressively more persistent, the model moves

from being indeterminate to determinate but then back into the region

of indeterminacy.

Indeed, as the persistence of the active regime increases from the range 0 < p11 ≤

0.57 to the range 0.58 ≤ p11 ≤ 0.86, the DL condition implies that cross-regime

spillovers take effect and the equilibrium moves from being indeterminate to determi-

nate just as the logic of their argument suggests. Continuing to apply the same condi-

tion, however, one concludes that as the active regime becomes even more persistent

with p11 above 0.86, the equilibrium reverts to indeterminacy. Table 2 summarizes

these puzzling findings.

Figure 1 plots the “determinacy” region implied by the DL condition for a range of

values of p11 and p22. Clearly, some of the results implied by this figure are spurious

since it makes no sense for the model to move from indeterminacy to determinacy

and back to indeterminacy as the active regime increases in persistence. How does

one explain this puzzle? We show in Section IV that the DL condition is a necessary

but not a sufficient condition for the NK model to be determinate.

IV. Sufficient Conditions for Indeterminacy

In this section we derive a sufficient condition for indeterminacy for a class of

Markov-switching rational expectations models that includes the MSNK model as a

special case. We show that our condition is equivalent to finding a solution to a certain
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Figure 1. A problematic implication of the DL condition: the new-

Keynesian model with α1 = 3.6, α2 = 0.7, γ1 = 0.3, γ2 = 0.1, β =

0.99, σ = 2.84, and κ = 0.3. The shaded area is a “uniqueness equi-

librium” region implied by the DL’s necessary and sufficient condition

for determinacy. As the active regime becomes progressively more per-

sistent, the model moves from being indeterminate to determinate for

some values of p22. For other values of p22, the model moves from the

indeterminate region to the determinate region but then back into the

region of indeterminacy.

non-linear equation and we derive two useful corollaries to our main theorem. The

first shows that the DL condition is necessary for determinacy. The second provides a

separate sufficient condition for indeterminacy that can be checked in practice. Using

Corollary 2, one can easily construct counterexamples showing that the DL condition

is not sufficient for determinacy. Proofs are collected in Appendices B-C.

Consider models of the form

Γst
yt = Etyt+1 + Ψst

ut (8)

where yt is an n-dimensional vector of endogenous random variables and ut is an

m-dimensional vector of exogenous shocks which are allowed to be serially correlated.

In particular, ut may take the vector autoregressive form ut = ρut−1 + εt where all

the eigenvalues of ρ are strictly less than one in absolute value and εt is a bounded

exogenous process independent of st satisfying Et−1 [εt] = 0. The new-Keynesian

model, Eq (4), is a special case of Eq (8) where Γst
= H−1Fst

and Ψst
= H−1.

Let the notation diag(Xi) denote a block-diagonal matrix whose diagonal elements

are X1, . . . , Xh. We have the following key theorem.
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Theorem 1. If there exist complex numbers c1, · · · , ch with |ci| ≤ 1 for all i = 1, . . . , h

and an nh-dimensional non-zero complex vector v such that

(diag (Γi) − (diag (ci) P ) ⊗ In) v = 0, (9)

then there exists multiple bounded solutions to Eq (8).

It is computationally feasible to check whether Eq (9) is satisfied by finding ci’s

that solve the non-linear equation

det (diag (Γi) − (diag (ci) P ) ⊗ In) = 0 (10)

subject to the constraint that |ci| ≤ 1 for all i = 1, . . . h. In the case of one regime

this reduces to an eigenvalue problem. In the case of two or more regimes it is a

polynomial that can be solved numerically, for example, by a grid search over the h

complex numbers {ci}
h
i=1. In the two-regime NK model, if there exists a solution where

both of the ci are inside the unit circle then our theorem guarantees the existence

of multiple bounded sunspot solutions to the MSNK model in both the active and

passive regimes.9

The following corollaries highlight two special cases of interest. The first shows

that the DL condition is a necessary condition for uniqueness and the second can

easily be used to construct examples to show that it is not sufficient.

Corollary 1. If diag
(
Γ−1

i

)
(P ⊗ In) has an eigenvalue greater than or equal to one in

absolute value, then there are multiple bounded solutions to Eq (8).

It might not be immediately obvious that the condition in this corollary is the same

as the DL condition when their condition is used to identify indeterminacy. But if

one appropriately reorders the variables and equations in their expanded system, Eq

(7), one will see that all the generalized eigenvalues of (B,A) lie on or outside the

unit circle if and only if the condition in Corollary 1 is satisfied.

Corollary 2. If there exists i ∈ {1, . . . , h} such that Γi has an eigenvalue less than or

equal to pii in absolute value, then there are multiple bounded solutions to (8).

Corollary 2 implies that there are conditions based only on the parameters of a

single regime that imply indeterminacy in every regime. This result is new. In

Section VI, we give a number of parameterized examples of the MSNK model, based

on this corollary, in which we show that if the inflation dove is sufficiently passive

there may be no action that can be taken by the inflation hawk that will restore

determinacy even in the active regime.

9One can show that for the case n = 1, Theorem 1 is both necessary and sufficient for the

existence of multiple bounded solutions. If one restricts attention to non-negative values for the

scalars, Γi, then DL’s condition for the Fisherian (one dimensional) model becomes a special case

of this Theorem.
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V. Indeterminacy in an Active Regime

In this section we use Theorem 1 to construct indeterminate solutions for both

active and passive regimes in the NK model. We then provide a quantitative example

using calibrated parameter values based on the estimates of Lubik and Schorfheide

(2004). This example illustrates one of the key messages of this paper. Multiple

self-fulfilling paths may spill over to the active regime even if the passive regime is

relatively short-lived. Moreover, the parameter values for which this phenomenon

occurs are well within the confidence bounds for recent parameter estimates based on

U.S. data.

It is widely believed that U.S. monetary policy in the post-1982 period has been

active enough to ensure uniqueness of the equilibrium within the framework of the

NK model. In the regime-switching environment studied by DL, however, there exists

a probability that policy will revert to the passive regime. If the equilibrium is not

unique, does indeterminacy occur only in the passive regime so that the equilibrium

remains unique once an inflation hawk takes office? This question is important be-

cause a positive answer implies that as long as the inflation hawk is in office, the

propagation of shocks will not be affected by indeterminacy in the passive regime.

Let bygones be bygones, so to speak.10 But if the answer to the question is negative,

a passive monetary policy is more damaging and prevalent than had previously been

thought because there may be multiple self-fulfilling paths for inflation even when an

inflation hawk is appointed to run the central bank.

V.1. Multiple bounded equilibria. To maintain analytical clarity, we assume that

the vector ut (of demand and supply shocks) follows an i.i.d. process. This assumption

does not alter conditions under which the equilibrium may or may not be unique.

The minimum-state-variable solution to the NK model (4) is given by the expression

yt = Gst
ut

where

Gst
= Γ−1

st
Ψst

=
1

σ + γst
+ καst

[

σ + γst
κσ

−αst
σ

]

. (11)

This solution exhibits no dynamics. If the sufficiency condition of Theorem 1 is satis-

fied, the solution is not unique and there are other bounded equilibria in which both

inflation and output, represented by yt, are serially dependent. Lubik and Schorfheide

(2004) give an analytical form for serially-dependent sunspot equilibria for the basic

10Farmer, Waggoner, and Zha (2006a) give an example of this sort in the context of a very simple

model.
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NK model with no regime switching. We show, below, how to find a similar represen-

tation of sunspot equilibria for the MSNK model. In these equilibria, inflation and

output are serially dependent even when the fundamental shocks are i.i.d.

To construct an indeterminate solution in the Markov-switching case let c1, c2 and

v′ = [v′
1, v

′
2] satisfy Eq (9) of Theorem 1. For this example, the vectors v1 and v2 are

two-dimensional and since Eq (9) is satisfied, there exist multiple bounded solutions

to the NK model, Eq (4), given by the expression,

yt = Gst
ut + wt, (12)

where

wt =

(

cst−1

v′
st−1

vst−1

vst
v′

st−1

)

wt−1 + vst
(Mut + ξt) . (13)

We have represented the solution as the sum of the fundamental solution (which is the

component Gst
ut) and a sunspot solution represented by wt. The sunspot solution is

autocorrelated and is driven by a non-fundamental sunspot shock, which is the term

ξt, and a fundamental sunspot shock, which is the component Mut where M is an

arbitrary 1 × 2 row matrix. The non-fundamental shock, ξt, is any one-dimensional

bounded stochastic process with zero mean that is independent of both ut and st.11

The terms cst
and vst

are analogous to eigenvalues and eigenvectors in a model with no

regime switching. Since the cst
are all inside the unit circle, the sequence {wt} remains

bounded and the sunspot shocks die out asymptotically, just as in the one-regime case

studied by Lubik and Schorfheide (2003, 2004).

It is straightforward to verify that Eq (12) is a solution. Since the stochastic

processes of ut and ξt are independent of st, it can be easily seen that

Etyt+1 =

(
cst

v′
st
vst

Etvst+1
v′

st

)

wt,

where

Etvst+1
= pst1v1 + pst2v2.

Since Gst
= Γ−1

st
Ψst

, one can see from Eqs (8) and (12) that

Etyt+1 = Γst
yt − Ψst

ut = Γst
wt.

It follows from Eq (9) that (12) is a solution if and only if
(

cst

v′
st
vst

(pst1v1 + pst2v2) v′
st
− Γst

)

wt = 0. (14)

11If vst−1
= 0, then the coefficient of wt−1 is taken to be zero and if any of the ci are equal to one

in absolute value, then M and ξt should be taken to be zero in order to guarantee boundedness. If

any of the ci or vi are complex, then the solution given by Eq (12) will be complex, but either the

real or the imaginary component of wt can be used to construct real solutions.
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As wt is proportional to vst
, Eq (14) needs to be verified only for wt = vst

. Because ci

and vi are chosen to satisfy Eq (9), Eq (14) will also hold. Therefore, we can directly

verify Eq (14) for a specific example, such as the one presented in the next subsection.

V.2. A Quantitative Example. This section demonstrates the existence of sunspot

solutions to the NK model when parameters are calibrated to the values estimated

by Lubik and Schorfheide (2004). Although these authors did not explicitly account

for the probabilities of regime change in their empirical work, taking account of these

probabilities in the NK model is a natural extension of their work. Our point is

to show that the possibility that the set of regimes may be indeterminate is not

outside of the bounds of plausibility and for this purpose the estimated values of

Lubik and Schorfheide (2004) seem a good place to start.

Lubik and Schorfheide estimate a constant-parameter version of the NK model for

the two subsamples: 1960:I-1979:II and 1982:I-1997:IV. For our calibrated example

we chose policy parameters in each regime equal to their estimates and we set private-

sector parameters equal to the means of their estimates for individual regimes. These

values are reported in columns 1 through 7 of Table 3. Notice that in contrast to

Table 1, Regime 1 is passive, in line with historical precedence (McChesney-Martin-

Burns-Miller came before Volker-Greenspan-Bernanke).

Private Sector Regime 1 Regime 2 Trans. Pr.

β σ κ α1 γ1 α2 γ2 p11 p22

0.9949 1.6550 0.6750 0.7700 0.1700 2.1900 0.3000 0.8577 0.9900

Table 3. Parameter Values Calibrated to Lubik and Schorfheide

(2004)’s Estimates

Columns 8 and 9 of this table report our calibrated transition probabilities. Given

that rational agents experienced passive monetary policy in the past, they may still

fear, under the Volker-Greenspan-Bernanke regime, that a future policymaker may

deviate from its active stance. Some deviations may simply reflect the reality that the

policymaker has a mandate to address other economic concerns such as recessions or

financial crises. Moreover, since Chairman of the Federal Reserve Board is a political

appointee, there is always a probability that an inflation dove may be appointed to

run the Fed. To take account of these possibilities we chose transition probabilities

as p11 = 0.8577 and p22 = 0.99.

The choice of p11 implies that agents perceive a 14% chance of returning to an active

regime in any quarter. This choice implies an expected duration for the passive regime

of only seven quarters. In contrast, the expected duration of the active regime (p11 =

0.99) is twenty five years. These numbers imply that, in the ergodic distribution, the
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economy will spend less than 7% of the time in the hands of the inflation dove. These

numbers do not seem unreasonable given historical experience.

Taking our calibrated parameterization, we solve Eq (10) and we find numbers

|c1| < 1 and |c2| < 1 such that

det (diag (Γi) − (diag (ci) P ) ⊗ In)

is equal to zero. Our algorithm leads to the following numerical solutions:

c1 = 0.999795,

c2 = 0.738137,

v1 =

[

−0.977509

−0.210551

]

,

v2 =

[

−0.010062

0.0065658

]

.

Substituting these values into Eq (13) and using Eq (12), we find persistent sunspot

solutions that remain bounded in both active and passive regimes.12 This example

highlights a key finding of our work. Even though a passive regime may be short-lived

and the agents’ belief in switching to this regime is low, the possibility that a passive

policy may be adopted at times makes it difficult for an active policy to eliminate the

destabilizing effects of self-fulfilling expectations.

VI. Further Implications of Cross-Regime Spillovers

In this section, we discuss a number of examples of cross-regime spillovers in the

MSNK model. The purpose is two-fold. One is to show practical problems of using

Corollary 1 as a necessary and sufficient condition for identifying indeterminacy (and

hence also for identifying determinacy), as was proposed in the existing literature

(Davig and Leeper, 2005, 2006b). The other is to draw out a disturbing implication

of Corollary 2. Consider the situation where there is a passive regime that satisfied

Corollary 2 but the parameter values are such that Corollary 1 is violated. If one uses

Corollary 1 as though it were a necessary and sufficient condition for indeterminacy,

one may wrongly conclude that an inflation hawk can make the policy active enough

to ensure uniqueness of the equilibrium. A correct conclusion is: there are no possible

values for the parameters of the interest rate and output-gap response coefficients of

the Taylor rule in the active regime that can restore determinacy.

12It is straightforward to verify that the resulting expression obtained by substituting these values

into Eqs (12) and (13) satisfies Eq (8) as required.
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We begin by revisiting the example considered in Section III.2 and we demonstrate

that this example satisfies the conditions of Corollary 2. Recall that in this example,

regime 1 is active and regime 2 is passive. Substituting the parameter values from

Table 1 into F2 and H into Eq (4) and computing Γ2 = H−1F2, one can verify that

Γ2 has an eigenvalue less than p22 = 0.9. By Corollary 2, the equilibria of the model

are indeterminate regardless of the values of p11 and bounded sunspot solutions can

be computed from Eq (12). Table 4 summarizes the correct equilibrium properties

of this model for different values of p11. This result explains the puzzling results

displayed in Table 2, which arise from using DL’s incorrect sufficiency condition for

uniqueness.

Equilibrium characteristics indeterminacy indeterminacy indeterminacy

p11 (Prob of active regime) (0, 0.57] [0.58, 0.86] [0.87, 1.0]

Table 4. Correct equilibrium characteristics of the example in Section

III.2 (according to Corollary 2).

When 0.58 ≤ p11 ≤ 0.86, the model has multiple bounded equilibria in contrast

to the incorrect results reported in Table 2. Figure 2 plots p11 against p22 holding

other parameter values fixed. The union of the dark-shaded and light-shaded areas

indicates an indeterminacy region. The light-shaded area is determined by Corollary

1 of Theorem 1. The dark-shaded area, determined by Corollary 2, is incorrectly

identified as a “uniqueness” region by the DL condition stated in Claim 1.

Figure 3 displays an indeterminate region corresponding to different values of α1

and α2 when p11 = 0.8 and p22 = 0.9. The values of the other parameters are the

same as in Table 1. As long as α1 > 1, the model would be determinate in regime

1 if st = 1 were an absorbing regime. Similarly, for 0 < α2 < 1 the model would be

indeterminate if st = 2 were absorbing. The union of dark-shaded and light-shaded

areas (computed using Corollaries 1 and 2) identifies a region of indeterminacy for

the MSNK model. The dark-shaded area represents the indeterminate region missed

by using Corollary 1. In this region monetary policy is sufficiently passive (α2 is less

than 0.75), that there is no unique solution to the new-Keynesian model no matter

how active is policy in the active regime.

Figure 4 corresponds to the upper-right panel of Figure 2 in Davig and Leeper

(2005, 2006b). It plots α1 against α2 when γ1 = 0, γ2 = 0, β = 0.99, σ = 1.0,

κ = 0.17, p11 = 0.8, and p22 = 0.95. If one uses Corollary 1 as though it were a neces-

sary and sufficient condition, the dark-shaded area will be regarded as a uniqueness

region and thus the inflation hawk in the active regime could respond to inflation

strongly enough (by increasing the value of α1) to ensure that both regimes are de-

terminate. This conclusion is incorrect since Corollary 2 establishes that there exist
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Figure 2. Equilibrium characteristics: the new-Keynesian model with

α1 = 3.6, α2 = 0.7, γ1 = 0.3, γ2 = 0.1, β = 0.99, σ = 2.84, and κ = 0.3.

The union of the dark and light shaded areas is an indeterminacy region

according to Corollaries 1 and 2. The dark-shaded area is incorrectly

regarded as a “uniqueness” region by the DL condition.
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Figure 3. Equilibrium characteristics: the new-Keynesian model with

γ1 = 0.3, γ2 = 0.1, β = 0.99, σ = 2.84, κ = 0.3, p11 = 0.8, and p22 = 0.9.

The union of the dark and light shaded areas is an indeterminacy region

according to Corollaries 1 and 2. The dark-shaded area represents the

difference between Corollary 1 and Corollary 2.

multiple bounded equilibria at every point in this dark-shaded area. If researchers

were to use Corollary 1 to test for indeterminacy, using methods similar to those

of Lubik and Schorfheide (2004), they would wrongly conclude that active monetary



MARKOV-SWITCHING NEW-KEYNESIAN MODEL 16

policy in the Volker-Greenspan era had ensured a unique equilibrium not only in the

post-1982 period but also before 1980.
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Figure 4. Equilibrium characteristics: the new-Keynesian model with

γ1 = 0, γ2 = 0, β = 0.99, σ = 1.0, κ = 0.17, p11 = 0.8, and p22 = 0.95 (an

example of DL’s Figure 2). The union of the dark and light shaded areas

is an indeterminacy region according to Corollaries 1 and 2. The dark-

shaded area represents the difference between Corollary 1 and Corollary

2.
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Figure 5. Equilibrium characteristics: the new-Keynesian model with

γ1 = 0, γ2 = 0, β = 0.99, σ = 1.0, κ = 0.17, p11 = 0.95, and p22 = 0.8

(an example of DL’s Figure 2). The union of the dark and light shaded

areas is an indeterminacy region according to Theorem 1. The dark-

shaded area marks the difference between Theorem 1 and its corollaries.



MARKOV-SWITCHING NEW-KEYNESIAN MODEL 17

Corollaries 1 and 2 are straightforward to implement. Theorem 1 identifies an

indeterminacy region that is larger than that identified by its two corollaries. To see

whether this difference matters in practice, Figure 5 replicates the upper-right panel

of Figure 2 from Davig and Leeper (2005, 2006b). This figures plots α1 against α2

when γ1 = 0, γ2 = 0, β = 0.99, σ = 1.0, κ = 0.17, p11 = 0.95, and p22 = 0.8. The

light-shaded area is identified by Corollary 1. For the most part, the area identified

by Corollary 2 overlaps with the light-shaded area (and thus we do not plot it). The

dark-shaded area marks the difference between Theorem 1 and its corollaries.

VII. Conclusion

The Taylor rule is widely regarded as an effective way to describe the historical con-

duct of monetary policy although the parameters of the rule have changed over time as

documented by Clarida, Galí, and Gertler (2000), Lubik and Schorfheide (2004), and

Boivin and Giannoni (2006). These changes are likely to be embedded in the public’s

perception that future monetary policy may change for better or worse (Goodfriend,

1993; Sargent, 1999; Mishkin, 2004). What are the equilibrium consequences if the

public believes that there is a probability that monetary policy will at times abandon

its hawkish stance on inflation in order to accommodate other economic concerns?

This question is at the heart of our paper.

We have studied a version of the new-Keynesian model where parameters of the

Taylor rule change over time according to a Markov-switching process. In this regime-

switching environment, rational agents form expectations by explicitly taking into

account the probability of future policy changes between active and passive regimes.

This environment is different from the basic new-Keynesian model with no regime

switching and, since agents are forward looking, it differs substantially from backward-

looking Markov-switching models studied by Sims and Zha (2006). New approaches

are required.

This paper has made four contributions to the study of NK models with endoge-

nous regimes. First, we have provided a wide class of sufficient conditions for non-

uniqueness of the bounded equilibrium. Second, we have proved that Davig and Leeper

(2005, 2006b)’s condition for uniqueness is necessary but not sufficient and when used

for identifying indeterminacy, is a special case of our general sufficient condition.

Third, we have showed that a passive policy may spillover into an active regime and

we have used existing estimates of policy for pre-1980 and post-1982 regimes to show

that this phenomenon cannot be ruled out as descriptive of U.S. data. Finally, we

have showed that there may exist regimes that are so passive that equilibria will be

indeterminate in all regimes no matter what policy is followed by an active policy

maker.
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A challenging task for future research is to derive a necessary and sufficient con-

dition under which there is a unique bounded equilibrium for the Markov switching

new-Keynesian model. The techniques used to construct our examples are easy to

implement and will, we hope, point the way to researchers who might wish to take

up this challenge. Solving this problem is a necessary step if a researcher wished to

follow Lubik and Schorfheide (2004) by constructing a test for indeterminacy in the

U.S. economy that takes account of regime switches.

Appendix A. Conditioning

The results obtained in this paper rely heavily on the concept of conditioning in

probability theory. Understanding this concept is essential to knowing where DL go

wrong with their necessary and sufficient condition for determinacy in the NK model.

The error occurs when they introduce the four new random variables π1t, π2t, x1t,

and x2t and use Eqs (5) and (6), reproduced below as Eqs (A1) and (A2),

Etπt+1 = pst1Etπ1t+1 + pst2Etπ2t+1, (A1)

Etxt+1 = pst1Etx1t+1 + pst2Etx2t+1, (A2)

to obtain the expanded linear system (7). The rules of conditioning, however, imply

the following conditional relationships

Etπt+1 = pst1Et [πt+1|st+1 = 1] + pst2Et [πt+2|st+1 = 2] , (A3)

Etxt+1 = pst1Et [xt+1|st+1 = 1] + pst2Et [xt+2|st+1 = 2] . (A4)

Although πi,t+1 = πt+1 and xi,t+1 = xt+1 when st+1 = i, it does not follow that

Etπi,t+1 = Et [πt+1 |st+1 = i ] and Etxi,t+1 = Et [xt+1 |st+1 = i ] for i = 1, 2. The dy-

namics of πi,t+1 and xi,t+1 when st+1 6= i affect the value of the Et [·] operator. In

order for (A1) and (A2) to hold, there must be additional hidden restrictions on the

dynamics of πi,t+1 and xi,t+1 when st+1 6= i. The linear system represented by (7) is

not the same as the original non-linear model (4). Although these two systems share

some solutions in common, there may exist bounded solutions to the original model

that are not solutions to the expanded linear system, as shown by the results in our

paper.

Appendix B. Proof of Theorem 1

Because any bounded solution yt+1 of (8) can be written as

yt+1 = ŷt+1 + ỹt+1

where ŷt+1 is any particular bounded solution of Eq (8) and ỹt+1 is a bounded solution

of

Et [yt+1] = Γst
yt, (A5)
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Eq (8) has multiple bounded solutions if and only if Eq (A5) has a non-zero bounded

solution, assuming a solution of Eq (8) exists. Since we are interested in the existence

of multiple bounded solutions, we will operate under the assumption that there exists

at least one bounded solution of Eq (8). This is a rather mild assumption. For

instance, Eq (8) will have a solution of the form yt = Gst
ut if and only if there is

nh × m matrix G such that

diag (Γi) G = (P ⊗ In) Gρ + Ψ

where Ψ′ = [Ψ1 · · ·Ψh].

Theorem 1 follows from the following more general theorem. While we believe

that this theorem comes close to giving the full region on which there are multiple

solutions, it is not practical to implement.

Theorem 2. Let V1, · · · , Vh be linear subspaces of C
n with at least one of the Vi

non-zero and let m1, · · · ,mh be positive real numbers. If there exist n × n complex

matrices Λi,j such that

Λi,jVj ⊂ Vi, (A6)

‖Λi,j‖ ≤
mi

mj

, (A7)

and

Γivi =
h∑

j=1

pi,jΛj,ivi for vi ∈ Vi (A8)

then there exists multiple bounded solutions of Eq (A5).

Before proceeding with the proof of the theorem, we relate the conditions in this

proposition to the constant parameter case. Consider the constant parameter analog

of Eq (8),

Et [yt+1] = Γyt − Ψut. (A9)

A bounded solution of Eq (A9) can be characterized by a linear subspace, often re-

ferred to as the stable matnifold, and a linear reduced form relation that describes the

evolution of the solution. The linear subspaces Vi play the role of the stable manifold

and the matrices Λi,j play the role of the reduced form coefficients. Equation (A6)

ensures that the solutions stays on the stable manifold and Equation (A8) ensures

that we indeed have a solution as long as we are on the stable manifold. Equation

(A7) guarantees that the solution is bounded. One should note that Eq (A7) is stated

in terms of a matrix norm, while the more usual conditions for the stable manifold

are in terms of eigenvalues. While these conditions are related, they are not the same.

Proof. We inductively construct a non-zero bounded solution of Eq (A5). For 1 ≤

i ≤ h, choose vi ∈ Vi so that at least one of the vi is non-zero. Let y1 = vs1
and
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yt+1 = Λst+1,st
yt. Condition (A6) guarantees that yt ∈ Vst

. This, together with

condition (A8), yields

Et [yt+1] =
h∑

j=1

pst,jEt [yt+1|st+1 = j]

=
h∑

j=1

pst,jΛj,st
yt

= Γst
yt.

So yt is a solution of Eq (A5). This solution is bounded since, using condition (A7),

‖yt+1‖ =
∥
∥Λst+1,st

Λst,st−1
· · ·Λs2,s1

vs1

∥
∥

≤
∥
∥Λst+1,st

∥
∥
∥
∥Λst,st−1

∥
∥ · · · ‖Λs2,s1

‖ ‖vs1
‖

≤
mst+1

ms1

‖vs1
‖ .

While we have constructed a non-zero bounded solution, it could be a complex. How-

ever, in this case, both the real and imaginary components will be bounded solutions

of Eq (A5) and at least one will be non-zero. �

Theorem 1 is essentially Theorem 2 applied to the case in which each of the Vi are

one-dimensional. We now proceed with the proof of Theorem 1

Proof. Suppose that there exists v and ci as in the Theorem 1 and let vi be the ith

n-dimensional block of v. Define Vi to be the subspace spanned by vi and define Λi,j

and mi by

Λi,j =

{
cj

‖vj‖
2 viv

H
j vj 6= 0

0 vj = 0
and mi =

{

‖vi‖ vi 6= 0

1 vi = 0
,

where vH
j is the the conjugate transpose of vj. By construction, Λi,j satisfies condition

(A6). Also,

‖Λi,j‖ =

{

|cj|
mi

mj
vj 6= 0

0 vj = 0
.
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In either case, ‖Λi,j‖ ≤ mi

mj
so condition (A7) holds. Finally, note that Eq (9) implies

Γivi = (e′i ⊗ In) diag (Γi) v

= (e′i ⊗ In) diag (cj) (P ⊗ In) v

= ci

h∑

j=1

pi,jvj

=
h∑

j=1

pi,j

(
ci

‖vi‖
2
vjv

H
i

)

vi

=
h∑

j=1

pi,jΛj,ivi,

where ei is the ith column of the h× h identity matrix. So condition (A8) holds. �

Appendix C. Proof of Corollaries 1 and 2

Proof. If (λ, u) is a eigenvalue-eigenvector pair of diag
(
Γ−1

i

)
(P ⊗ In) with |λ| ≥ 1,

then
(
λInh − diag

(
Γ−1

i

)
(P ⊗ In)

)
u = 0

or (

diag (Γi) −
1

λ
(P ⊗ In)

)

u = 0.

Corollary 1 follows from Theorem 1 by taking ci = 1/λ and v = u. �

Proof. Suppose (λ, u) is a eigenvalue-eigenvector pair of Γi with |λ| ≤ pi,i. Define

cj =

{
λ

pi,i
j = i and pi,i > 0

0 otherwise
, vi =

{

u j = i

0 j 6= i
and v =






v1

...

vh




 .

An easy calculation shows that

(diag (Γi) − (diag (ci) ⊗ In) (P ⊗ In)) v = 0,

and so the second corollary follows from Theorem 1. �
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