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Regression Discontintuity Designs1

1. Introduction

Since the late 1990s there has been a large number of studies in economics applying and

extending Regression Discontinuity (RD) methods from its origins in the statistics literature

in the early 60’s (Thisthlewaite and Cook, 1960). Here, we review some of the practical

issues in implementation of RD methods. The focus is on five specific issues. The first

is the importance of graphical analyses as powerful methods for illustrating the design.

Second, we suggest using local linear regression methods using only the observations close

to the discontinuity point. Third, we discuss choosing the bandwidth using cross validation

specifically tailored to the focus on estimation of regression functions on the boundary of the

support, following Ludwig and Miller (2005). Fourth, we provide two simple estimators for

the asymptotic variance, one of them exploiting the link with instrumental variables methods

derived by Hahn, Todd, and VanderKlaauw (2001, HTV). Finally, we discuss a number of

specification tests and sensivitity analyses based on tests for (a) discontinuities in the average

values for covariates, (b) discontinuities in the conditional density of the forcing variable, as

suggested by McCrary (2007), (c) discontinuities in the average outcome at other values of

the forcing variable.

2. Sharp and Fuzzy Regression Discontinuity Designs

2.1 Basics

Our discussion will frame the RD design in the context of the modern literature on causal

effects and treatment effects, using the potential outcomes framework (Rubin, 1974), rather

than the regression framework that was originally used in this literature. For unit i there

are two potential outcomes, Yi(0) and Yi(1), with the causal effect defined as the difference

1These notes draw heavily on Imbens and Lemieux (2007).
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Yi(1) − Yi(0), and the observed outcome equal to

Yi = (1 − Wi) · Yi(0) + Wi · Yi(1) =

{

Yi(0) if Wi = 0,
Yi(1) if Wi = 1,

where Wi ∈ {0, 1} is the binary indicator for the treatment.

The basic idea behind the RD design is that assignment to the treatment is determined,

either completely or partly, by the value of a predictor (the forcing variable Xi) being on

either side of a common threshold. This predictor Xi may itself be associated with the

potential outcomes, but this association is assumed to be smooth, and so any discontinuity

in the conditional distribution of the outcome, indexed by the value of this covariate at

the cutoff value, is interpreted as evidence of a causal effect of the treatment. The design

often arises from administrative decisions, where the incentives for units to participate in a

program are partly limited for reasons of resource constraints, and clear transparent rules

rather than discretion by administrators are used for the allocation of these incentives.

2.2 The Sharp Regression Discontinuity Design

It is useful to distinguish between two designs, the Sharp and the Fuzzy Regression

Discontinuity (SRD and FRD from hereon) designs (e.g., Trochim, 1984, 2001; HTV). In

the SRD design the assignment Wi is a deterministic function of one of the covariates, the

forcing (or treatment-determining) variable X:

Wi = 1{Xi ≥ c}.

All units with a covariate value of at least c are in the treatment group (and participation

is mandatory for these individuals), and all units with a covariate value less than c are in

the control group (members of this group are not eligible for the treatment). In the SRD

design we look at the discontinuity in the conditional expectation of the outcome given the

covariate to uncover an average causal effect of the treatment:

lim
x↓c

E[Yi|Xi = x] − lim
x↑c

E[Yi|Xi = x] = lim
x↓c

E[Yi(1)|Xi = x] − lim
x↑c

E[Yi(0)|Xi = x], (1)

is interpreted as the average causal effect of the treatment at the discontinuity point.

τSRD = E[Yi(1) − Yi(0)|Xi = c]. (2)
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In order to justify this interpretation we make a smoothness assumption. Typically this

assumption is formulated in terms of conditional expectations2:

Assumption 1 (Continuity of Conditional Regression Functions)

E[Y (0)|X = x] and E[Y (1)|X = x],

are continuous in x.

Under this assumption,

τSRD = lim
x↓c

E[Yi|Xi = x] − lim
x↑c

E[Yi|Xi = x].

The estimand is the difference of two regression functions at a point.

There is a unavoidable need for extrapolation, because by design there are no units with

Xi = c for whom we observe Yi(0). We therefore will exploit the fact that we observe units

with covariate values arbitrarily close to c.3

As an example of a SRD design, consider the study of the effect of party affiliation

of a congressman on congressional voting outcomes by Lee (2007). See also Lee, Moretti

and Butler (2004). The key idea is that electoral districts where the share of the vote for a

Democrat in a particular election was just under 50% are on average similar in many relevant

respects to districts where the share of the Democratic vote was just over 50%, but the small

difference in votes leads to an immediate and big difference in the party affiliation of the

elected representative. In this case, the party affiliation always jumps at 50%, making this

is a SRD design. Lee looks at the incumbency effect. He is interested in the probability

2More generally, one might want to assume that the conditional distribution function is smooth in the
covariate. Let FY (w)|X(y|x) = Pr(Yi(w) ≤ y|Xi = x) denote the conditional distribution function of Yi(w)
given Xi. Then the general version of the assumption assume that FY (0)|X(y|x) and FY (1)|X(y|x) are
continuous in x for all y. Both assumptions are stronger than required, as we will only use continuity at
x = c, but it is rare that it is reasonable to assume continuity for one value of the covariate, but not at other
values of the covariate.

3Although in principle the first component in the difference in (1) would be straightforward to estimate if
we actually observe individuals with Xi = x, with continuous covariates we also need to estimate this term
by averaging over units with covariate values close to c.
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of Democrats winning the subsequent election, comparing districts where the Democrats

won the previous election with just over 50% of the popular vote with districts where the

Democrats lost the previous election with just under 50% of the vote.

2.3 The Fuzzy Regression Discontinuity Design

In the Fuzzy Regression Discontinuity (FRD) design the probability of receiving the

treatment need not change from zero to one at the threshold. Instead the design allows for

a smaller jump in the probability of assignment to the treatment at the threshold:

lim
x↓c

Pr(Wi = 1|Xi = x) 6= lim
x↑c

Pr(Wi = 1|Xi = x),

without requiring the jump to equal 1. Such a situation can arise if incentives to participate

in a program change discontinuously at a threshold, without these incentives being powerful

enough to move all units from nonparticipation to participation. In this design we interpret

the ratio of the jump in the regression of the outcome on the covariate to the jump in the

regression of the treatment indicator on the covariate as an average causal effect of the

treatment. Formally, the estimand is

τFRD =
limx↓c E[Yi|Xi = x] − limx↑c E[Yi|Xi = x]

limx↓c E[Wi|Xi = x] − limx↑c E[Wi|Xi = x]
.

As an example of a FRD design, consider the study of the effect of financial aid on

college attendance by VanderKlaauw (2002). VanderKlaauw looks at the effect of financial

aid on acceptance on college admissions. Here Xi is a numerical score assigned to college

applicants based on the objective part of the application information (SAT scores, grades)

used to streamline the process of assigning financial aid offers. During the initial stages of

the admission process, the applicants are divided into L groups based on discretized values

of these scores. Let

Gi =



















1 if 0 ≤ Xi < c1

2 if c1 ≤ Xi < c2

...
L if cL−1 ≤ Xi

denote the financial aid group. For simplicity, let us focus on the case with L = 2, and a

single cutoff point c. Having a score just over c will put an applicant in a higher category and
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increase the chances of financial aid discontinuously compared to having a score just below c.

The outcome of interest in the VanderKlaauw study is college attendance. In this case, the

statistical association between attendance and the financial aid offer is ambiguous. On the

one hand, an aid offer by a college makes that college more attractive to the potential student.

This is the causal effect of interest. On the other hand, a student who gets a generous

financial aid offer from one college is likely to have better outside opportunities in the form

of financial aid offers from other colleges. In the VanderKlaauw application College aid is

emphatically not a deterministic function of the financial aid categories, making this a fuzzy

RD design. Other components of the college application package that are not incorporated

in the numerical score such as the essay and recommendation letters undoubtedly play an

important role. Nevertheless, there is a clear discontinuity in the probability of receiving an

offer of a larger financial aid package.

Let us first consider the interpretation of τFRD. HTV exploit the instrumental variables

connection to interpret the fuzzy regression discontinuity design when the effect of the treat-

ment varies by unit. Let Wi(x) be potential treatment status given cutoff point x, for x in

some small neigborhood around c. Wi(x) is equal to one if unit i would take or receive the

treatment if the cutoff point was equal to x. This requires that the cutoff point is at least in

principle manipulable.4 For example, if X is age, one could imagine changing the age that

makes an individual eligible for the treatment from c to c + ε. Then it is useful to assume

monotonicity (see HTV):

Assumption 2 Wi(x) is non-increasing in x at x = c.

Next, define compliance status. This concept is similar to that in instrumental variables,

e.g., Imbens and Angrist (1994), Angrist, Imbens and Rubin (1996). A complier is a unit

such that

lim
x↓Xi

Wi(x) = 0, and lim
x↑Xi

Wi(x) = 1.

4Alternatively, one could think of the individual characteristic Xi as being manipulable, but in many
cases this is an immutable characteristic such as age.
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Compliers are units who would get the treatment if the cutoff were at Xi or below, but they

would not get the treatment if the cutoff were higher than Xi. To be specific, consider an

example where individuals with a test score less than c are encouraged for a remedial teaching

program (Matsudaira, 2007). Interest is in the effect of the remedial teaching program on

subsequent test scores. Compliers are individuals who would participate if encouraged (if the

cutoff for encouragement is below or equal to their actual score), but not if not encouraged

(if the cutoff for encouragement is higher than their actual score). Then

limx↓c E[Yi|Xi = x] − limx↑c E[Yi|Xi = x]

limx↓c E[Wi|Xi = x] − limx↑c E[Wi|Xi = x]

= E[Yi(1) − Yi(0)|unit i is a complier and Xi = c].

The estimand is an average effect of the treatment, but only averaged for units with Xi = c

(by regression discontinuity), and only for compliers (people who are affected by the thresh-

old).

3. The FRD Design, Unconfoundedness and External Validity

3.1 The FRD Design and Unconfoundedness

In the FRD setting it is useful to contrast the RD approach with estimation of average

causal effects under unconfoundedness. The unconfoundedness assumption, e.g., Rosenbaum

and Rubin (1983), Imbens (2004), requires that

Yi(0), Yi(1) ⊥⊥ Wi

∣

∣

∣

∣

Xi.

If this assumption holds, then we can estimate the average effect of the treatment at Xi = c

as

E[Yi(1) − Yi(0)|Xi = x] = E[Yi|Wi = 1, Xi = c] − E[Yi|Wi = 0, Xi = c].

This approach does not exploit the jump in the probability of assignment at the discontinuity

point. Instead it assumes that differences between treated and control units with Xi = c are

interpretable as average causal effects.
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In contrast, the assumptions underlying an FRD analysis implies that comparing treated

and control units with Xi = c is likely to be the wrong approach. Treated units with Xi = c

include compliers and alwaystakers, and control units at Xi = c consist only of nevertak-

ers. Comparing these different types of units has no causal interpretation under the FRD

assumptions. Although, in principle, one cannot test the unconfoundedness assumption, one

aspect of the problem makes this assumption fairly implausible. Unconfoundedness is fun-

damentally based on units being comparable if their covariates are similar. This is not an

attractive assumption in the current setting where the probability of receiving the treatment

is discontinuous in the covariate. Thus units with similar values of the forcing variable (but

on different sides of the threshold) must be different in some important way related to the

receipt of treatment. Unless there is a substantive argument that this difference is immate-

rial for the comparison of the outcomes of interest, an analysis based on unconfoundedness

is not attractive in this setting.

3.2 The FRD Design and External Validity

One important aspect of both the SRD and FRD designs is that they at best provide

estimates of the average effect for a subpopulation, namely the subpopulation with covariate

value equal to Xi = c. The FRD design restricts the relevant subpopulation even further

to that of compliers at this value of the covariate. Without strong assumptions justifying

extrapolation to other subpopulations (e.g., homogeneity of the treatment effect) the designs

never allow the researcher to estimate the overall (population) average effect of the treatment.

In that sense the design has fundamentally only a limited degree of external validity, although

the specific average effect that is identified may well be of special interest, for example in cases

where the policy question concerns changing the location of the threshold. The advantage

of RD designs compared to other non-experimental analyses that may have more external

validity such as those based on unconfoundedness, is that RD designs generally have a

relatively high degree of internal validity in settings where they are applicable.

4. Graphical Analyses
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4.1 Introduction

Graphical analyses should be an integral part of any RD analysis. The nature of RD

designs suggests that the effect of the treatment of interest can be measured by the value of

the discontinuity in the expected value of the outcome at a particular point. Inspecting the

estimated version of this conditional expectation is a simple yet powerful way to visualize

the identification strategy. Moreover, to assess the credibility of the RD strategy, it is useful

to inspect two additional graphs. The estimators we discuss later use more sophisticated

methods for smoothing but these basic plots will convey much of the intuition. For strikingly

clear examples of such plots, see Lee, Moretti, and Butler (2004), Lalive (2007), and Lee

(2007). Two figures from Lee (2007) are attached.

4.2 Outcomes by Forcing Variable

The first plot is a histogram-type estimate of the average value of the outcome by the

forcing variable. For some binwidth h, and for some number of bins K0 and K1 to the left and

right of the cutoff value, respectively, construct bins (bk, bk+1], for k = 1, . . . , K = K0 + K1,

where

bk = c − (K0 − k + 1) · h.

Then calculate the number of observations in each bin,

Nk =

N
∑

i=1

1{bk < Xi ≤ bk+1},

and the average outcome in the bin:

Y k =
1

Nk
·

N
∑

i=1

Yi · 1{bk < Xi ≤ bk+1}.

The first plot of interest is that of the Y k, for k = 1, K against the mid point of the bins,

b̃k = (bk + bk+1)/2. The question is whether around the threshold c there is any evidence of

a jump in the conditional mean of the outcome. The formal statistical analyses discussed

below are essentially just sophisticated versions of this, and if the basic plot does not show
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any evidence of a discontinuity, there is relatively little chance that the more sophisticated

analyses will lead to robust and credible estimates with statistically and substantially sig-

nificant magnitudes. In addition to inspecting whether there is a jump at this value of the

covariate, one should inspect the graph to see whether there are any other jumps in the con-

ditional expectation of Yi given Xi that are comparable to, or larger than, the discontinuity

at the cutoff value. If so, and if one cannot explain such jumps on substantive grounds, it

would call into question the interpretation of the jump at the threshold as the causal effect

of the treatment. In order to optimize the visual clarity it is important to calculate averages

that are not smoothed over the cutoff point. The attached figure is taken from the paper by

Lee (2007).

4.2 Covariates by Forcing Variable

The second set of plots compares average values of other covariates in the K bins. Specifi-

cally, let Zi be the M-vector of additional covariates, with m-th element Zim. Then calculate

Zkm =
1

Nk
·

N
∑

i=1

Zim · 1{bk < Xi ≤ bk+1}.

The second plot of interest is that of the Zkm, for k = 1, K against the mid point of the

bins, b̃k, for all m = 1, . . . , M . Lee (2007) presents such a figure for a lagged value of the

outcome, namely the election results from a prior election, against the vote share in the last

election. In the case of FRD designs, it is also particularly useful to plot the mean values of

the treatment variable Wi to make sure there is indeed a jump in the probability of treatment

at the cutoff point. Plotting other covariates is also useful for detecting possible specification

problems (see Section 8) in the case of either SRD or FRD designs.

4.3 The Density of the Forcing Variable

In the third graph one should plot the number of observations in each bin, Nk, against

the mid points b̃k. This plot can be used to inspect whether there is a discontinuity in the

distribution of the forcing variable X at the threshold. McCrary (2007) suggests that such

discontinuity would raise the question whether the value of this covariate was manipulated
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by the individual agents, invalidating the design. For example, suppose that the forcing

variable is a test score. If individuals know the threshold and have the option of re-taking

the test, individuals with test scores just below the threshold may do so, and invalidate the

design. Such a situation would lead to a discontinuity of the conditional density of the test

score at the threshold, and thus be detectable in plots such as described here. See Section 8

for more discussion of the specification tests based on this idea.

5. Estimation: Local Linear Regression

5.1 Nonparametric Regression at the Boundary

The practical estimation of the treatment effect τ in both the SRD and FRD designs

is largely standard nonparametric regression (e.g., Pagan and Ullah, 1999; Härdle, 1990;

Li and Racine, 2007). However, there are two unusual features to estimation in the RD

setting. First, we are interested in the regression function at a single point, and second, that

single point is a boundary point. As a result, standard nonparametric kernel regression does

not work very well. At boundary points, such estimators have a slower rate of convergence

than they do at interior points. Standard methods for choosing the bandwidth are also not

designed to provide good choices in this setting.

5.2 Local Linear Regression

Here we discuss local linear regression (Fan and Gijbels, 1996). Instead of locally fitting a

constant function, we can fit linear regression functions to the observations within a distance

h on either side of the discontinuity point:

min
αl,βl

N
∑

i|c−h<Xi<c

(Yi − αl − βl · (Xi − c))2 ,

and

min
αr,βr

N
∑

i|c≤Xi<c+h

(Yi − αr − βr · (Xi − c))2 .

The value of µl(c) and µr(c) are then estimated as

µ̂l(c) = α̂l + β̂l · (c − c) = α̂l, and µ̂r(c) = α̂r + β̂r · (c − c) = α̂r,
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Given these estimates, the average treatment effect is estimated as

τ̂SRD = α̂r − α̂l.

Alternatively one can estimate the average effect directly in a single regression, by solving

min
α,β,τ,γ

N
∑

i=1

1{c − h ≤ Xi ≤ c + h} · (Yi − α − β · (Xi − c) − τ · Wi − γ · (Xi − c) ·Wi)
2 ,

which will numerically yield the same estimate of τSRD.

We can make the nonparametric regression more sophisticated by using weights that

decrease smoothly as the distance to the cutoff point increases, instead of the zero/one

weights based on the rectangular kernel. However, even in this simple case the asymptotic

bias can be shown to be of order h2, and the more sophisticated kernels rarely make much

difference. Furthermore, if using different weights from a more sophisticated kernel does

make a difference, it likely suggests that the results are highly sensitive to the choice of

bandwidth. So the only case where more sophisticated kernels may make a difference is

when the estimates are not very credible anyway because of too much sensitivity to the

choice of bandwidth. From a practical point of view one may just focus on the simple

rectangular kernel, but verify the robustness of the results to different choices of bandwidth.

For inference we can use standard least squares methods. Under appropriate conditions

on the rate at which the bandwidth goes to zero as the sample size increases, the resulting

estimates will be asymptotically normally distributed, and the (robust) standard errors from

least squares theory will be justified. Using the results from HTV, the optimal bandwidth is

h ∝ N−1/5. Under this sequence of bandwidths the asymptotic distribution of the estimator

τ̂ will have a non-zero bias. If one does some undersmoothing, by requiring that h ∝ N−δ

with 1/5 < δ < 2/5, then the asymptotic bias disappears and standard least squares variance

estimators will lead to valid confidence intervals.

5.3 Covariates

Often there are additional covariates available in addition to the forcing covariate that

is the basis of the assignment mechanism. These covariates can be used to eliminate small
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sample biases present in the basic specification, and improve the precision. In addition,

they can be useful for evaluating the plausibility of the identification strategy, as discussed

in Section 8.1. Let the additional vector of covariates be denoted by Zi. We make three

observations on the role of these additional covariates.

The first and most important point is that the presence of these covariates rarely changes

the identification strategy. Typically, the conditional distribution of the covariates Z given X

is continuous at x = c. If such discontinuities in other covariates are found, the justification

of the identification strategy may be questionable. If the conditional distribution of Z given

X is continuous at x = c, then including Z in the regression

min
α,β,τ,δ

N
∑

i=1

1{c−h ≤ Xi ≤ c+h}·(Yi − α − β · (Xi − c) − τ ·Wi − γ · (Xi − c) · Wi − δ′Zi)
2
,

will have little effect on the expected value of the estimator for τ , since conditional on X

being close to c, the additional covariates Z are independent of W .

The second point is that even though with X very close to c, the presence of Z in the

regression does not affect any bias, in practice we often include observations with values of

X not too close to c. In that case, including additional covariates may eliminate some bias

that is the result of the inclusion of these additional observations.

Third, the presence of the covariates can improve precision if Z is correlated with the

potential outcomes. This is the standard argument, which also supports the inclusion of

covariates even in analyses of randomized experiments. In practice the variance reduction

will be relatively small unless the contribution to the R2 from the additional regressors is

substantial.

5.4 Estimation for the Fuzzy Regression Discontinuity Design

In the FRD design, we need to estimate the ratio of two differences. The estimation issues

we discussed earlier in the case of the SRD arise now for both differences. In particular,

there are substantial biases if we do simple kernel regressions. Instead, it is again likely to

be better to use local linear regression. We use a uniform (rectangular) kernel, with the same
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bandwidth for estimation of the discontinuity in the outcome and treatment regressions.

First, consider local linear regression for the outcome, on both sides of the discontinuity

point. Let

(

α̂yl, β̂yl

)

= arg min
αyl,βyl

∑

i:c−h≤Xi<c

(Yi − αyl − βyl · (Xi − c))2 , (3)

(

α̂yr, β̂yr

)

= arg min
αyr,βyr

∑

i:c≤Xi≤c+h

(Yi − αyr − βyr · (Xi − c))
2
. (4)

The magnitude of the discontinuity in the outcome regression is then estimated as τ̂y =

α̂yr − α̂yl. Second, consider the two local linear regression for the treatment indicator:

(

α̂wl, β̂wl

)

= arg min
αwl,βwl

∑

i:c−h≤Xi<c

(Wi − αwl − βwl · (Xi − c))2 , (5)

(

α̂wr, β̂wr

)

= arg min
αwr,βwr

∑

i:c≤Xi≤c+h

(Yi − αwr − βwr · (Xi − c))2 . (6)

The magnitude of the discontinuity in the treatment regression is then estimated as τ̂w =

α̂wr − α̂wl. Finally, we estimate the effect of interest as the ratio of the two discontinuities:

τ̂FRD =
τ̂y

τ̂w
=

α̂yr − α̂yl

α̂wr − α̂wl
. (7)

Because of the specific implementation we use here, with a uniform kernel, and the same

bandwidth for estimation of the denominator and the numerator, we can characterize the

estimator for τ as a Two-Stage-Least-Squares (TSLS) estimator (See HTV). This equality

still holds when we use local linear regression and include additional regressors. Define

Vi =





1
1{Xi < c} · (Xi − c)
1{Xi ≥ c} · (Xi − c)



 , and δ =





αyl

βyl

βyr



 . (8)

Then we can write

Yi = δ′Vi + τ · Wi + εi. (9)

Estimating τ based on the regression function (9) by TSLS methods, with the indicator

1{Xi ≥ c} as the excluded instrument and Vi as the set of exogenous variables is numerically

identical to τ̂FRD as given in (7).
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6. Bandwidth Selection

An important issue in practice is the selection of the smoothing parameter, the binwidth

h. Here we focus on cross-validation procedures rather than plug in methods which would

require estimating derivatives nonparametrically. The specific methods discussed here are

based on those developed by Ludwig and Miller (2005, 2007). Initially we focus on the SRD

case, and in Section 6.2 we extend the recommendations to the FRD setting.

To set up the bandwidth choice problem we generalize the notation slightly. In the SRD

setting we are interested in the

τSRD = lim
x↓c

µ(x) − lim
x↑c

µ(x),

where µ(x) = E[Yi|Xi = x]. We estimate the two terms as

̂lim
x↓c

µ(x) = α̂r(c), and ̂lim
x↑c

µ(x) = α̂l(c),

where α̂l(x) and β̂l(x) solve

(

α̂l(x), β̂l(x)
)

= arg min
α,β

∑

j|x−h<Xj<x

(Yj − α − β · (Xj − x))2 . (10)

and α̂r(x) and β̂r(x) solve

(

α̂r(x), β̂r(x)
)

= arg min
α,β

∑

j|x<Xj<x+h

(Yj − α − β · (Xj − x))2 . (11)

Let us focus first on estimating limx↓c µ(x). For estimation of this limit we are interested in

the bandwidth h that minimizes

Qr(x, h) = E

[

(

lim
z↓x

µ(z) − α̂r(x)

)2
]

,

at x = c. However, we focus on a single bandwidth for both sides of the threshold, and

therefore focus on minimizing

Q(c, h) =
1

2
·(Ql(c, h) + Qr(c, h)) =

1

2
·
(

E

[

(

lim
x↑c

µ(x) − α̂l(c)

)2
]

+ E

[

(

lim
x↓c

µ(x) − α̂r(c)

)2
])

.
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We now discuss two methods for choosing the bandwidth.

6.1 Bandwidth Selection for the SRD Design

For a given binwidth h, let the estimated regression function at x be

µ̂(x) =

{

α̂l(x) if x < c,
α̂r(x) if x ≥ c,

where α̂l(x), β̂l(x), α̂r(x) and β̂r(x) solve (10) and (11). Note that in order to mimic the

fact that we are interested in estimation at the boundary we only use the observations on

one side of x in order to estimate the regression function at x, rather than the observations

on both sides of x, that is, observations with x − h < Xj < x + h. In addition, the strict

inequality in the definition implies that µ̂(x) evaluated at x = Xi does not depend on Yi.

Now define the cross-validation criterion as

CVY (h) =
1

N

N
∑

i=1

(Yi − µ̂(Xi))
2 , (12)

with the corresponding cross-validation choice for the binwidth

hopt
CV = arg min

h
CVY (h).

The expected value of this cross-validation function is under some conditions equal to

E[CVY (h)] = C + E[Q(X, h)] = C +
∫

Q(x, h)fX(dx), for some constant that does not

depend on h. Although the modification to estimate the regression using one-sided kernels

mimics more closely the estimand of interest, this is still not quite what we are interested

in. Ultimately we are solely interested in estimating the regression function in the neigh-

borhood of a single point, the threshold c, and thus in minimizing Q(c, h), rather than
∫

x
Q(x, h)fX(x)dx. If there are few observations in the tails of the distributions, minimizing

the criterion in (12) may lead to larger bins than is optimal for estimating the regression

function around x = c if c is in the center of the distribution. We may therefore wish to

minimize the cross-validation criterion after first discarding observations from the tails. Let

qX,δ,l be δ quantile of the empirical distribution of X for the subsample with Xi < c, and let
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qX,δ,r be δ quantile of the empirical distribution of X for the subsample with Xi ≥ c. Then

we may wish to use the criterion

CVδ
Y (h) =

1

N

∑

i:qX,δ,l≤Xi≤qX,1−δ,r

(Yi − µ̂(Xi))
2 . (13)

The modified cross-validation choice for the bandwidth is

hδ,opt
CV = arg min

h
CVδ

Y (h). (14)

The modified cross-validation function has expectation, again ignoring terms that do not

involve h, proportional to E[Q(X, h)|qX,δ,l < X < qX,δ,r]. Choosing a smaller value of δ

makes the expected value of the criterion closer to what we are ultimately interested, that is,

Q(c, h), but has the disadvantage of leading to a noisier estimate of E[CVδ
Y (h)]. In practice

one may wish to choose δ = 1/2, and discard 50% of the observations on either side of the

threshold, and afterwards assess the sensitivity of the bandwidth choice to the choice of δ.

Ludwig and Miller (2005) implement this by using only data within 5 percentage points of

the threshold on either side.

6.2 Bandwidth Selection for the FRD Design

In the FRD design, there are four regression functions that need to be estimated: the

expected outcome given the forcing variable, both on the left and right of the cutoff point,

and the expected value of the treatment, again on the left and right of the cutoff point. In

principle, we can use different binwidths for each of the four nonparametric regressions.

In the section on the SRD design, we argued in favor of using identical bandwidths for

the regressions on both sides of the cutoff point. The argument is not so clear for the pairs of

regressions functions by outcome we have here, and so in principle we have two optimal band-

widths, one based on minimizing CVδ
Y (h), and one based on minimizing CVδ

W (h), defined

correspondingly. It is likely that the conditional expectation of the treatment is relatively

flat compared to the conditional expectation of the outcome variable, suggesting one should

use a larger binwidth for estimating the former.5 Nevertheless, in practice it is appealing

5In the extreme case of the SRD design the conditional expectation of W given X is flat on both sides
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to use the same binwidth for numerator and denominator. Since typically the size of the

discontinuity is much more marked in the expected value of the treatment, one option is to

use the optimal bandwidth based on the outcome discontinuity. Alternatively, to minimize

bias, one may wish to use the smallest bandwidths selected by the cross validation criterion

applied separately to the outcome and treatment regression:

hopt
CV = min

(

arg min
h

CVδ
Y (h), arg min

h
CVδ

W (h)
)

,

where CVδ
Y (h) is as defined in (12), and CVδ

W (h) is defined similarly. Again a value of

δ = 1/2 is likely to lead to reasonable estimates in many settings.

7. Inference

We now discuss some asymptotic properties for the estimator for the FRD case given

in (7) or its alternative representation in (9).6 More general results are given in HTV. We

continue to make some simplifying assumptions. First, as in the previous sections, we use a

uniform kernel. Second, we use the same bandwidth for the estimator for the jump in the

conditional expectations of the outcome and treatment. Third, we undersmooth, so that

the square of the bias vanishes faster than the variance, and we can ignore the bias in the

construction of confidence intervals. Fourth, we continue to use the local linear estimator.

Under these assumptions we give an explicit expression for the asymptotic variance, and

present two estimators for the asymptotic variance. The first estimator follows explicitly the

analytic form for the asymptotic variance, and substitutes estimates for the unknown quanti-

ties. The second estimator is the standard robust variance for the Two-Stage-Least-Squares

(TSLS) estimator, based on the sample obtained by discarding observations when the forcing

covariate is more than h away from the cutoff point. Both are robust to heteroskedasticity.

7.1 The Asymptotic Variance

To characterize the asymptotic variance we need a couple of additional pieces of notation.

of the threshold, and so the optimal bandwidth would be infinity. Therefore, in practice it is likely that the
optimal bandwidth would be larger for estimating the jump in the conditional expectation of the treatment
than in estimating the jump in the conditional expectation of the outcome.

6The results for the SRD design are a special case of these for the FRD design.
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Define the four variances

σ2
Y l = lim

x↑c
Var(Yi|Xi = x), σ2

Y r = lim
x↓c

Var(Yi|Xi = x),

σ2
Wl = lim

x↑c
Var(Wi|Xi = x), σ2

Wr = lim
x↓c

Var(Wi|Xi = x),

and the two covariances

CY Wl = lim
x↑c

Cov(Yi, Wi|Xi = x), CY Wr = lim
x↓c

Cov(Yi, Wi|Xi = x).

Note that because of the binary nature of W , it follows that σ2
Wl = µWl · (1 − µWl), where

µWl = limx↑c Pr(Wi = 1|Xi = x), and similarly for σ2
Wr. To discuss the asymptotic variance

of τ̂ it is useful to break it up in three pieces. The asymptotic variance of
√

Nh(τ̂y − τy) is

Vτy =
4

fX(c)
·
(

σ2
Y r + σ2

Y l

)

. (15)

The asymptotic variance of
√

Nh(τ̂w − τw) is

Vτw =
4

fX(c)
·
(

σ2
Wr + σ2

Wl

)

(16)

The asymptotic covariance of
√

Nh(τ̂y − τy) and
√

Nh(τ̂w − τw) is

Cτy,τw =
4

fX(c)
· (CY Wr + CY Wl) . (17)

Finally, the asymptotic distribution has the form

√
Nh · (τ̂ − τ )

d−→ N
(

0,
1

τ 2
w

· Vτy +
τ 2
y

τ 4
w

· Vτw − 2 · τy

τ 3
w

· Cτy,τw

)

. (18)

This asymptotic distribution is a special case of that in HTV (page 208), using the rectangular

kernel, and with h = N−δ, for 1/5 < δ < 2/5 (so that the asymptotic bias can be ignored).

7.2 A Plug-in Estimator for the Asymptotic Variance

We now discuss two estimators for the asymptotic variance of τ̂ . First, we can estimate

the asymptotic variance of τ̂ by estimating each of the components, τw, τy, Vτw , Vτy , and

Cτy,τw and substituting them into the expression for the variance in (18). In order to do this

we first estimate the residuals

ε̂i = Yi − µ̂y(Xi) = Yi − 1{Xi < c} · α̂yl − 1{Xi ≥ c} · α̂yr ,
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η̂i = Wi − µ̂w(Xi) = Wi − 1{Xi < c} · α̂wl − 1{Xi ≥ c} · α̂wr.

Then we estimate the variances and covariances consistently as

σ̂2
Y l =

1

Nhl

∑

i|c−h≤Xi<c

ε̂2
i , σ̂2

Y r =
1

Nhr

∑

i|c≤Xi≤c+h

ε̂2
i ,

σ̂2
Wl =

1

Nhl

∑

i|c−h≤Xi<c

η̂2
i , σ̂2

Wr =
1

Nhr

∑

i|c≤Xi≤c+h

η̂2
i ,

ĈY Wl =
1

Nhl

∑

i|c−h≤Xi<c

ε̂i · η̂i, ĈY Wr =
1

Nhr

∑

i|c≤Xi≤c+h

ε̂i · η̂i.

Finally, we estimate the density consistently as

f̂X(x) =
Nhl + Nhr

2 · N · h .

Then we can plug in the estimated components of Vτy , VτW
, and CτY ,τW

from (15)-(17), and

finally substitute these into the variance expression in (18).

7.3 The TSLS Variance Estimator

The second estimator for the asymptotic variance of τ̂ exploits the interpretation of the τ̂

as a TSLS estimator, given in (9). The variance estimator is equal to the robust variance for

TSLS based on the subsample of observations with c − h ≤ Xi ≤ c + h, using the indicator

1{Xi ≥ c} as the excluded instrument, the treatment Wi as the endogenous regressor and

the Vi defined in (8) as the exogenous covariates.

8. Specification Testing

There are generally two main conceptual concerns in the application of RD designs,

sharp or fuzzy. A first concern about RD designs is the possibility of other changes at the

same cutoff value of the covariate. Such changes may affect the outcome, and these effects

may be attributed erroneously to the treatment of interest. The second concern is that of

manipulation of the covariate value.

8.1 Tests Involving Covariates
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One category of tests involves testing the null hypothesis of a zero average effect on pseudo

outcomes known not to be affected by the treatment. Such variables includes covariates that

are by definition not affected by the treatment. Such tests are familiar from settings with

identification based on unconfoundedness assumptions. In most cases, the reason for the

discontinuity in the probability of the treatment does not suggest a discontinuity in the

average value of covariates. If we find such a discontinuity, it typically casts doubt on the

assumptions underlying the RD design. See the second part of the Lee (2007) figure for an

example.

8.2 Tests of Continuity of the Density

The second test is conceptually somewhat different, and unique to the RD setting. Mc-

Crary (2007) suggests testing the null hypothesis of continuity of the density of the covariate

that underlies the assignment at the discontinuity point, against the alternative of a jump

in the density function at that point. Again, in principle, one does not need continuity of

the density of X at c, but a discontinuity is suggestive of violations of the no-manipulation

assumption. If in fact individuals partly manage to manipulate the value of X in order to be

on one side of the boundary rather than the other, one might expect to see a discontinuity

in this density at the discontinuity point.

8.3 Testing for Jumps at Non-discontinuity Points

Taking the subsample with Xi < c we can test for a jump in the conditional mean of the

outcome at the median of the forcing variable. To implement the test, use the same method

for selecting the binwidth as before. Also estimate the standard errors of the jump and use

this to test the hypothesis of a zero jump. Repeat this using the subsample to the right

of the cutoff point with Xi ≥ c. Now estimate the jump in the regression function and at

qX,1/2,r, and test whether it is equal to zero.

8.4 RD Designs with Misspecification

Lee and Card (2007) study the case where the forcing variable variable X is discrete. In

practice this is of course always true. This implies that ultimately one relies for identification
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on functional form assumptions for the regression function µ(x). Lee and Card consider a

parametric specification for the regression function that does not fully saturate the model,

that is, it has fewer free parameters than there are support points. They then interpret the

deviation between the true conditional expectation E[Y |X = x] and the estimated regression

function as random specification error that introduces a group structure on the standard er-

rors. Lee and Card then show how to incorporate this group structure into the standard

errors for the estimated treatment effect. Within the local linear regression framework dis-

cussed in the current paper one can calculate the Lee-Card standard errors (possibly based

on slightly coarsened covariate data if X is close to continuous) and compare them to the

conventional ones.

8.5 Sensitivity to the Choice of Bandwidth

One should investigate the sensitivity of the inferences to this choice, for example, by

including results for bandwidths twice (or four times) and half (or a quarter of) the size of

the originally chosen bandwidth. Obviously, such bandwidth choices affect both estimates

and standard errors, but if the results are critically dependent on a particular bandwidth

choice, they are clearly less credible than if they are robust to such variation in bandwidths.

8.6 Comparisons to Estimates Based on Unconfoundedness in the FRD Design

If we have an FRD design, we can also consider estimates based on unconfoundedness.

Inspecting such estimates and especially their variation over the range of the covariate can

be useful. If we find that for a range of values of X, our estimate of the average effect of the

treatment is relatively constant and similar to that based on the FRD approach, one would

be more confident in both sets of estimates.
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