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Abstract

Optimal contracts in a dynamic model must address a number of issues absent from

static frameworks. The CEO can manipulate earnings in the short run; he may undo

contracts through private saving; and shocks to �rm value can weaken the incentive

e¤ect of securities over time. We analyze the optimal compensation scheme in such a

setting. The e¢ cient contract takes a surprisingly simple form, and can be implemented

by a �Dynamic Incentive Account�. The CEO�s expected pay is escrowed into an

account, a fraction of which is invested in the �rm�s stock and the remainder in cash.

The account features state-dependent rebalancing and time-dependent vesting. It is

constantly rebalanced so that the equity fraction remains above a certain threshold;

this threshold sensitivity is typically increasing over time even in the absence of career

concerns. The account vests gradually both during the CEO�s employment and after

he quits, to deter short-termist actions before retirement.
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1 Introduction

Many classical models of CEO compensation consider only a single period, or multiple un-

linked periods. However, the optimal contract in a static analysis may be suboptimal in a

dynamic world where the CEO�s current actions, such as his e¤ort or savings/consumption

choice, impact future periods. For example, short-term contracts can encourage the CEO to

manipulate earnings or scrap investment projects to boost the current stock price at the ex-

pense of long-run value. By privately saving, the CEO can separate his consumption stream

from the path of income provided by his contract, and thus �undo�the intended intertem-

poral incentives. The incentive e¤ect of �rm securities may change over time, so that they

no longer have the initially desired e¤ect: if �rm value declines, options may fall out-of-the-

money and bear little sensitivity to the stock price. In addition to the three above challenges,

a dynamic setting also provides opportunities absent from a static framework �in particular,

the �rm has the option to reward current e¤ort with future rather than contemporaneous

compensation.

This paper analyzes optimal executive compensation in a dynamic model that allows for

all of the above complexities, which are likely important features in real life. In our frame-

work, the CEO consumes in multiple periods, thus allowing current e¤ort to be compensated

in the future, but may choose to save rather than simply consuming the income provided by

the contract. He can temporarily boost current earnings through manipulation or earnings

smoothing; the long-term costs may not appear until after the CEO has retired. Further-

more, �rm value is subject to shocks in each period which will a¤ect the value, and incentive

e¤ect, of any securities the CEO is given as part of his incentive contract.

In an in�nite horizon model where the CEO has no option to manipulate earnings or

privately save, the optimal contract is time-independent: the sensitivity of pay to the �rm�s

return is the same in each period. The optimal contract is also scale-independent. In

our model, the relevant measure of incentives is the percentage change in CEO pay for a

percentage change in �rm value; translated into real variables, this is the fraction of CEO

pay that comprises of stock. If the CEO�s outside option doubles, his total pay doubles but

the relative weighting on cash and stock remains the same. This result extends to a dynamic

setting Edmans, Gabaix and Landier (2009), who advocated this incentive measure in a
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one-period model with a risk-neutral CEO. The optimal contract also involves consumption

smoothing. Since the agent is risk-averse, it is e¢ cient to spread the reward for e¤ort across

all future periods rather than concentrating it in the current period (the �deferred reward

principle�). This result is consistent with Boschen and Smith (1995), who �nd that changes

in �rm value has a much greater e¤ect on future rather than contemporaneous pay.

With a �nite horizon, the sensitivity of the contract to �rm returns is now increasing

over time �the �increasing incentives principle.�As the CEO approaches retirement, there

are fewer periods in which to spread the reward for e¤ort, and so the reward in the current

period must increase. We thus generate a similar prediction to Gibbons and Murphy (1992),

but without invoking career concerns.

Allowing the CEO to manipulate the stock price has two e¤ects on the optimal contract,

which must change to prevent such behavior. The CEO�s wealth is now sensitive to �rm

returns even after retirement, to deter him from manipulating the stock price upwards just

before he leaves. In addition, it leads to the contract sensitivity rising over time, even in an

in�nite-horizon model. This is because the CEO bene�ts immediately from short-termism

as it boosts his current consumption, but the cost is only su¤ered in the future and thus has

a discounted e¤ect on the CEO�s utility. Therefore, an increasing slope is needed to ensure

that the CEO loses more dollars in the future than he gains today.

By contrast, the possibility of private savings does not change the sensitivity of the

contract to �rm value, since it does not a¤ect the CEO�s action. Instead, giving the CEO

the option to privately save impacts the time trend of the level of pay. This optimal contract

now involves a greater rise in compensation over time compared to a setting in which saving

is impossible. Rising pay is necessary to deter the CEO from wishing to save today to

increase future consumption.

Despite the complications that result from a dynamic setting, the optimal contract can be

implemented in a surprisingly simple manner. When initially appointed, the CEO is given a

�Dynamic Incentive Account�: a portfolio of which a given fraction is invested in the �rm�s

stock and the remainder in cash. As time evolves, and �rm value changes, this portfolio is

continuously rebalanced, so that the fraction in the �rm�s stock remains su¢ cient to induce

e¤ort at minimum risk to the CEO. This fraction represents the contract�s sensitivity, and so
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is constant in an in�nite horizon model where manipulation is impossible, and increasing over

time otherwise. For example, a fall in the share price decreases the equity in the incentive

account; this is addressed by using cash in the account to purchase stock. By contrast, if

the share price rises, some of the equity can be sold to reduce the risk borne by the CEO.

In addition to continuous rebalancing, the Dynamic Incentive Account also features grad-

ual vesting, both during the CEO�s employment and after his retirement. He can only con-

sume a fraction of the account in each period, and it does not immediately vest upon leaving

the �rm �full withdrawal is only possible after a su¢ cient period has elapsed for the e¤ects

of manipulation to have been reversed. If the model horizon is in�nite, the vesting fraction

is time-independent (constant across periods), just like the contract sensitivity.

In sum, the Dynamic Incentive Account has two key features, which each achieve sep-

arate objectives. State-dependent rebalancing ensures that the CEO always has su¢ cient

incentives to exert e¤ort, while minimizing the risk that he bears. Time-dependent vesting

dissuades the CEO from manipulating earnings, while allowing him to �nance consumption.

In this paper, vesting and rebalancing are separate events. In most real-life compensation

schemes, vesting and rebalancing are one and the same event �the CEO can only sell his

securities for cash when they vest. Thus, while placing long vesting periods on stock and

options deters myopia, it does not achieve rebalancing and thus maintain their incentive

e¤ect as the share price changes.

Similarly, existing theories of vesting horizons analyze vesting and rebalancing as being

the same event. Peng and Roell (2009) derive the optimal vesting period as a trade-o¤:

distant vesting deters manipulation but increases the risk borne by the CEO as it delays

rebalancing of stock for cash. Brisley (2006) and Bhattacharyya and Cohn (2008) show that

allowing the CEO to rebalance his securities for cash can increase his willingness to undertake

risky projects by reducing his �rm-speci�c risk. Since rebalancing can only be achieved

through vesting, Bhattacharyya and Cohn show that the optimal vesting period is short.

While they consider stock, Brisley analyzes options where rebalancing is only necessary upon

strong performance, since only in-the-money options subject the CEO to risk.1 Therefore, as

1Another di¤erence between their models is that in Brisley (2006), the securities vest before investment
decisions are made; in Bhattacharrya and Cohn (2008) vesting occurs afterwards.
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in our model, state-dependent rebalancing is optimal; in Brisley, rebalancing must coincide

with vesting and so this entails state-dependent vesting. Indeed, recent empirical studies

(e.g. Bettis, Bizjak, Coles and Kalpathy (2008)) document that performance-based (i.e.

state-dependent) vesting is becoming increasingly popular. However, state-dependent vesting

may allow the CEO to manipulate the stock price upwards and cash out his shares. Thus,

state-dependent vesting has critically di¤erent e¤ects to the combination of state-dependent

rebalancing and time-dependent vesting. Our framework incorporates manipulation and

so requires these two features to achieve the two separate goals of e¤ort inducement and

manipulation deterrence.

In addition to the above papers on vesting horizons, our paper is also related to the lit-

erature on optimal contracts in the presence of manipulation. Lacker and Weinberg (1989)

identify a class of settings in which no manipulation is optimal and linear contracts obtain.

Goldman and Slezak (2006) model the trade-o¤ between e¤ort inducement (which increases

the optimal equity stake) and manipulation deterrence (which reduces it). More generally,

the theory is related to dynamic models of the principal-agent problem, such as DeMarzo and

Sannikov (2006), DeMarzo and Fishman (2007), He (2008a), Sannikov (2008) and Garrett

and Pavan (2009). Our modeling setup bears some similarities to the multi-period framework

of Edmans and Gabaix (2008) (�EG�), who also generate time-independent contracts. Tech-

nically, we draw the �detail-neutral�features of our contracts from that paper: for instance,

the functional form of the contract is independent of the noise distribution and agent�s utility

function. However, EG do not consider manipulation and restrict the CEO to consuming in

the �nal period only. The most closely related paper is He (2008b) who considers a dynamic

setting in which the agent can privately save and also engage in a myopic action (similar

to manipulation in this paper). He shows that the optimal wage pattern is non-decreasing

over time, that su¢ ciently good past performance leads to permanent pay raises, and that

severance pay is e¢ cient. Our model has quite di¤erent speci�cations (multiplicative utility,

continuous action choice and a cost function that need not be linear) which leads to a scale-

independent, closed-form contract. Our analysis focuses on the state-dependent rebalancing

and time-dependent vesting of the dynamic incentive account.

In addition to its results, our paper contributes a number of methodological innovations.
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To our knowledge, it is the �rst to derive conditions on the model primitives which guarantee

the validity of the �rst-order approach to solve a dynamic agency problem with private

savings. An agency problem is a maximization problem subject to the agent�s incentive

constraints. The �rst-order approach replaces the incentive constraints against complex

multi-period deviations with weaker local constraints (i.e. �rst-order conditions), with the

hope that the solution to the relaxed problem satis�es all incentive constraints.2 This method

is often valid without private savings (hence the one-shot deviation principle), but it has

proved problematic when the agent can save. The di¢ culties arise since the agent can engage

in joint deviations to save and reduce e¤ort, because savings provide insurance against future

shocks to income and thus reduce the agent�s incentives to exert e¤ort in the future. Our

method to guarantee the validity of the �rst-order approach centers around viewing the

agent�s total lifetime income as a function of his total disutility of e¤ort. If this function is

concave, the �rst-order approach is valid, since the agent�s utility is concave in income.

The bulk of the analysis derives the (exactly) optimal contract to implement a given e¤ort

level, as in Grossman and Hart (1983). We then endogenize the optimal path of e¤ort levels,

and this extension contains our second methodological innovation. Following the argument

of Fong and Sannikov (2009) that predictions of optimal contracting theories are important

only insofar as they have sizable, rather than negligible, impact on pro�tability, we aim to

derive a simple contract that is close to the optimal contract in terms of e¢ ciency, rather

than the complicated optimal contract. Our contract is approximately optimal under the

assumption that �rm value is signi�cantly larger than the CEO�s wage, which is indeed true

in practice. Under this assumption, the di¤erence in pro�tability between our contract and

the optimal contract converges to 0 as �rm�s earnings become larger. The methodological

innovation here is in proving that the contract is approximately optimal without deriving

the optimal contract. To do so, we construct an upper bound on pro�t that any contract

can attain, justify it using martingale methods, and show that our simple contract comes

2There are methods to verify the validity of the �rst-order approach which �nd the solution of the relaxed
problem and verify global incentive compatibility of each individual solution numerically rather than �nding
conditions on primitives to �nd validity. For example, see Werning (2001) and Dittmann, Maug and Spalt
(2008). Also, Williams (2008) derives conditions on primitives to guarantee the validity of the �rst-order
approach, which apply to a range of dynamic contracting problems that do not involve private saving.
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close to the upper bound. (See also He (2008b) who uses a related technique in a di¤erent

setting.)

This paper is organized as follows. Section 2 presents the discrete time version of the

model and derives the optimal contract when the CEO has logarithmic utility, as this version

of the model is most tractable. We show that the contract involves consumption smoothing

and typically rising incentives over time, and that it can be implemented in practice using the

Dynamic Incentive Account. Section 3 shows that the key economics of the contract continue

to hold under general CRRA utility functions, autocorrelated noise and in continuous time.

Section 4 concludes.

2 The Core Model

2.1 Assumptions

We consider a multiperiod model featuring a �rm (also referred to as the principal) which

o¤ers a contract to a CEO (also referred to as the agent). The CEO�s utility function is

given by:

U =

8<:
PT

t=1 e
��t (cte

�g(at))
1�

1� if  6= 1PT
t=1 e

��t (ln ct � g (at)) if  = 1;
(1)

where e��t represents a discount factor,  > 0 is the CEO�s relative risk aversion, ct is

consumption and at is e¤ort (also referred to as �action�), de�ned over some interval [at; at].

The action is broadly de�ned to encompass any decision that improves �rm value but is

personally costly to the manager. The main interpretation is e¤ort, but it can also refer

to rent extraction, in which case a low at re�ects cash �ow diversion or private bene�t

consumption.

The utility function in (1) exhibits multiplicative preferences, i.e. the e¤ect of e¤ort on

the CEO�s utility depends on his level of consumption. Such preferences are common in

macroeconomic models and consider private bene�ts as a normal good, consistent with the

treatment of most goods and services in consumer theory. Edmans, Gabaix and Landier

(2009) show that multiplicative preferences lead to scale-independent contracts. The CEO�s
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reservation utility is u.

The CEO works until time L and then retires. He lives until time T � L. If T > L, the

CEO takes no action from time L + 1 to T (i.e. at = 0) but continues to consume. In each

period t, a signal of the CEO�s e¤ort is released. The core interpretation of the signal is

the �rm�s stock return and so we will use the terms �signal�and �return�interchangeably;

other interpretations will be discussed later. In the absence of manipulation, the signal is

given by

Rt = at + �t; (2)

where �1; :::; �T are independent noises and �2; :::; �T have log-concave densities.3 Section 3.1

extends the model to autocorrelated noises.

As in EG, we assume that in each period t, the CEO �rst observes the noise �t and then

takes action at, before observing the noise in the next period. This timing assumption is also

featured in models in which the CEO observes the �state of nature�before choosing his e¤ort

level, as well as cash �ow diversion models where the CEO sees total output before deciding

how much to steal (e.g. DeMarzo and Fishman (2007)). EG show that this assumption leads

to tractable contracts in discrete time, as well as consistent results with the continuous time

case, where noise and actions are simultaneous.

Manipulation of Returns. We allow for the CEO to manipulate the �rm�s return. In

practice, such manipulation can take many forms. In the most literal interpretation, the

manager can change accounting policies to accelerate the realization of revenues or delay

the impact of costs (either by concealing information, or capitalizing rather than expensing

costs).4 Alternatively, he can engage in short-termist behavior by scrapping investment

projects (as modeled by Stein (1988)) or taking on risky projects (such as sub-prime lending)

for which the potential downside may not manifest for several years. In both cases, the

increase in current earnings is at the expense of future pro�ts. Note that manipulation may

3A random variable is log-concave if it has a density with respect to the Lebesgue measure, and the log
of this density is a concave function. Many standard density functions are log-concave, in particular the
Gaussian, uniform, exponential, Laplace, Dirichlet, Weibull, and beta distributions (see, e.g., Caplin and
Nalebu¤ (1991)). On the other hand, most fat-tailed distributions are not log-concave, such as the Pareto
distribution.

4See Goldman and Slezak (2006) and Peng and Roell (2008, 2009) for models featuring such manipulation.
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be downwards as well as upwards: if the contract involves rising bonuses over time (as in

Gibbons and Murphy (1992)), the CEO may be tempted to sacri�ce current earnings to

boost future pro�ts. In practice, this can be achieved by investing in negative-NPV projects,

or �big bath�accounting (taking large write-downs in the current period).

We model such manipulation as follows. At each time t, the CEO can choose to engage

in manipulation mt, and simultaneously selects the �release lag�it 2 f1; :::;Mg, which is the
interval before the manipulation becomes apparent. For example, forgoing an investment

project that pays o¤ in the very long-run will only worsen earnings far into the future, and

so the release lag it is high. In the presence of manipulation, the �rm�s returns are

rt = Rt +mt � � (mt) ; rt+it = Rt+it �mt; rs = Rs for s 6= t; t+ it; (3)

where � represents the cost of manipulation. We assume � (0) = �0 (0) = 0, and � (m) > 0

for m 6= 0. Therefore, manipulation lowers returns at period t + it by mt, and only boosts

returns in period t by mt � � (mt). Manipulation is ine¢ cient owing to the deadweight

cost � (mt). In reality, such losses arise because resources are required to change accounting

policies, positive-NPV projects are being scrapped (for mt > 0), or negative-NPV projects

are being pursued (for mt < 0). The principal observes rt in each period, but not at, mt or

�t.

Private Saving. We allow for the CEO to privately save or borrow, so that he can separate

his consumption stream from the path of income provided by the contract. If the CEO saves

dt at time t, he invests it in a bank account yielding an instantaneous risk-free interest rate

rf , and thus can consume an additional dterf s at time t+ s. We allow for dt to be negative:

the CEO may consume out of past savings, or borrow (i.e. he may have negative savings).

The optimal contract must be robust to private saving.

The Contract. The contract is a set of functions ct (r1; :::; rt): Rt! R, for t > 0. We

do not require the contract to be linear or to be implementable with standard securities

(e.g. stock and options). EG show that independent and log-concave noises, combined with

a non-increasing absolute risk aversion (NIARA) utility function, are su¢ cient to rule out

stochastic contracts and contracts that require the agent to send messages to the principal.

Since the utility function is CRRA, we have NIARA. Therefore, we can restrict the analysis
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to deterministic, message-free contracts.

The Firm�s Objective. As in Grossman and Hart (1983), Dittmann and Maug (2007)

and EG, we �x the path of e¤ort levels that the principal wants to induce. In each period

t, the principal wishes to implement (at least) a�t , where a
�
t > at and a

�
t is allowed to be

time-varying. EG show in a one-period model that, if the �rm is large enough, a�t will equal

the maximum e¤ort level at. This is because the bene�ts of e¤ort are a function of �rm

size, and the costs of e¤ort (both direct disutility and the ine¢ cient risk-sharing caused by

using an incentive contract to induce e¤ort) are proportional to the CEO�s wage. If the �rm

is su¢ ciently large compared to the CEO�s wage, the bene�ts of e¤ort swamp the costs,

and maximum e¤ort is e¢ cient. A maximum e¤ort level will exist because there is a limit

either to the number of productive activities that a CEO can undertake (e.g., �nite NPV-

positive projects) or to the number of hours in a day the CEO can work while remaining

productive. (Under the interpretation of a as rent extraction, the maximum e¤ort level

re�ects zero stealing.) We revisit this �maximum e¤ort principle� formally in section 3.3.

For the remainder of the paper, we will assume that a�t = at.

We also assume that the principal wishes to deter all manipulation (mt = 0 8 t). Manip-
ulation is costly because it is ine¢ cient (� (mt) � 0); the bene�t of allowing manipulation

is that it may permit a less sensitive and thus cheaper contract. Intuitively, if the �rm is

su¢ ciently large compared to the CEO, the costs of manipulation exceed the bene�ts and

zero manipulation is optimal. Appendix A.5 contains potential microfoundations for the

optimality of zero manipulation.

The �rm wishes to �nd the cheapest contract that ensures the CEO�s participation and

satis�es up to three constraints. The �rst is the standard �incentive compatibility� (IC)

constraint, which ensures that the CEO exerts (at least) the desired e¤ort level in each

period, i.e. at � a�t 8 t. Second, the �no manipulation�(NM) constraint ensures that the
CEO does not engage in costly manipulation, i.e. mt = 0 8 t. Third, the �private savings�
(PS) constraint ensures that the CEO does not wish to undo the contract via private savings,

i.e. dt = 0 8 t.
To highlight the e¤ect of allowing private savings and manipulation on the optimal con-

tract, we will consider versions of the model in which manipulation and/or private saving
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are ruled out.

2.2 Local Constraints

Our solution strategy is as follows. First, we �nd the best contract among all contracts that

satisfy the local constraints. Second, we verify that this contract satis�es all constraints,

i.e. the agent will not wish to undertake global deviations. We start with the �rst stage:

this section derives the local constraints, which we use to derive the contract in Section 2.3

. Later, we will prove that this contract also deters global deviations.

Contract ct (r1; :::; rt) yields the following utility:

U (r1; :::; rT ) =

8<:
PT

t=1 e
��t (ct(r1;:::;rt)e

�g(at))
1�

1� if  6= 1PT
t=1 e

��t (ln ct (r1; :::; rt)� g (at)) if  = 1:
(4)

ct (r1; :::; rt) is a stochastic variable whose value depends on the past history of signal real-

izations, but for conciseness we will suppress this dependence and write ct. If the CEO takes

the recommended actions (a�t )t�0, his utility is:

U =

8<:
PT

t=1Btc
1�
t = (1� ) if  6= 1PT

t=1Bt (ln ct � g (a�t )) if  = 1;
(5)

where

Bt = e��t�(1�)g(a
�
t ): (6)

We �rst address the IC constraint and consider a local deviation " from the target action

a�t . If the CEO exerts e¤ort at = a�t + ", the �rm�s return increases from rt = �t + a�t to

rt = �t + a�t + ". The CEO�s utility rises by

Et

�
@U

@rt

@rt
@at

+
@U

@at

�
":

This deviation should be non-positive for " < 0. We therefore require

Et

�
@U

@rt

@rt
@at

+
@U

@at

�
� 0:
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Since @rt
@at
= 1 and @U

@at
= �g0 (a�t )Btc

1�
t , the IC constraint is:

IC : Et

�
@U

@rt

�
� g0 (a�t )Btc

1�
t for 0 � t � L: (7)

We next address the NM constraint. If the CEO undertakes a small manipulation mt,

the return in period t becomes rt = Rt+mt� � (mt). For some i �M , the return in period

t+ i becomes rt+i = Rt �mt. His utility rises by

Et

�
@U

@rt

�
(mt � � (mt)) + Et

�
@U

@rt+i

�
(�mt) :

To prevent manipulation, this increase in utility must be zero. Since � (0) = �0 (0) = 0, the

� (mt) term drops out for small manipulations. Hence, the NM constraint is:

NM : Et

�
@U

@rt

�
= Et

�
@U

@rt+i

�
for 0 � t � L, 0 � i �M: (8)

Finally, we consider the PS constraint. Since private saving does not a¤ect the manager�s

action, we can ignore the disutility of e¤ort (g (at)) and focus solely on the positive utility

generated by income. Let V (c1; :::; cT ) denote this utility. If the CEO saves dt in period t

and invests it until t+ s, his utility increases by

�Et
�
@V

@ct

�
dt + Et

�
@V

@ct+s

�
dte

rf s:

To deter private saving (or dis-saving), this change should be zero, i.e.

Et

�
erf t

@V

@ct

�
= Et

�
erf (t+s)

@V

@ct+s

�
;

the Euler equation. Therefore, the PS constraint is that erf t @V
@ct
is a martingale. Intuitively,

if it were not a martingale, the agent would privately save to reallocate consumption to the

time periods in which marginal utility is higher. For the utility function (5), this becomes:

PS:
Btc

�
t

e�rf t
is a martingale. (9)

This condition can be contrasted with the �Inverse Euler Equation�(IEE), which charac-
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terizes a vast set of agency problems without the PS constraint (Rogerson (1985), Golosov,

Kocherlakota and Tsyvinski (2003) and Farhi and Werning (2009)):

IEE:
e�rf t

Btc
�
t

is a martingale. (10)

The intuition for the Inverse Euler Equation is as follows. The inverse of the agent�s marginal

utility is the marginal cost of delivering utility to the agent at a given moment of time.

Equation (10) is the �rst-order condition for giving the agent a given level of utility in the

cheapest possible way. If (10) did not hold, the principal could bene�t by shifting the agent�s

consumption to periods with a lower value of e
�rf t

Btc
�
t

.

Without private saving, the principal chooses the time path of consumption so to mini-

mize the marginal cost of providing utility. With private saving, the agent chooses the time

path of consumption to maximize its marginal utility, i.e. maximize the reciprocal of the

marginal cost. This explains why the IEE is the inverse of the PS constraint.

2.3 Optimal Contract, Log Utility

We now derive the optimal contract. We �rst present the contract under log utility, as

the expressions are most transparent and the key principles are the same as the general

CRRA case. Section 3.1 considers the general CRRA case, as well as extends the model to

autocorrelated noise.

Theorem 1 (Optimal contract, log utility). The optimal contract that satis�es the local
constraints pays the CEO ct in period t, where ct satis�es:

ln ct =

tX
s=1

�srs + �t; (11)

and �s and �t are deterministic functions. Without the NM constraint:

�t =

(
1�e��

1�e��(T�t+1) g
0(a�t ) for t � L

0 for t > L:
(12)
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With the NM constraint,

�t =

(
(1�e��)e�t
1�e��(T�t+1)� for t � L+M

0 for t > L+M;
(13)

where � = sups�L (e
��sg0 (a�s)). Let � = 1 denote the case when private savings are allowed

(and so the PS constraint is imposed) and � = �1 if they are ruled out (and so the PS
constraint is not imposed). The value of �t is given by:

�t = (rf � �) t+ � lnE
h
e��

P
s�t �srs

i
+ � for t � T; (14)

where � is chosen to ensure that the agent is at his reservation utility:

u =
X
t

e��t

 
�+ (rf � �) t+ � lnE

h
e��

P
s�t �srs

i
+ E

"X
s�t

�srs

#
� g (a�t )

!
:

Proof (Heuristic). The Appendix presents a formal proof. Here, we provide a heuristic proof

that conveys the �essence�of the economic argument. We consider the case of L = T = 2

and use the following reasoning from EG. (7) yields: e�2�d (ln c2) =dr2 � e�2�g0 (a�2). In the

Appendix we show that the cheapest contract involves this local IC condition binding, i.e.

d (ln c2) =dr2 = g0 (a�2) � �2. Integrating yields the contract:

ln c2 = �2r2 +B (r1) ; (15)

where B (r1) is a function of r1. It is the �constant�viewed from time 2.

For brevity, we consider only the case without the NM constraint. The case with the

NM constraint is proven similarly but rather more complex in discrete time; the arguments

can be seen more clearly in the continuous-time heuristic proof in Section 3.2. If the PS

constraint is not imposed, we use the IEE (10). Applying this for t = 1 gives:

c1 = e��rfE1 [c2] = E
�
e�2r2

�
eB(r1)+��rf : (16)

If the PS constraint is imposed, we apply PS (9) for t = 1 to give:

c1 = erf��E1 [c2] = E
�
e�2r2

�
eB(r1)+rf��:
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In both cases, we obtain

ln c1 = B (r1) + k; (17)

where the constant k is independent of r1. (In this proof, expressions such as k and k0 are

constants independent of r1 and r2.) Total utility is:

U = e�� ln c1 + e�2� ln c2 + k0 =
�
e�� + e�2�

�
B (r1) + k00: (18)

We next apply (7) to (18) to yield: (e�� + e�2�)B0 (r1) � e��g0 (a�1) : Again, the cheapest

contract involves this condition binding, i.e. (e�� + e�2�)B0 (r1) = e��g0 (a�1) : Integrating

yields:

B (r1) = �1r1 + k000; (19)

where �1 = e��g0 (a�1) = (e
�� + e�2�). Combining (19) with (15) yields:

ln c2 = �1r1 + �2r2 + �2;

for some constant �2. Combining (19) with (17) yields:

ln c1 = �1r1 + �1;

for another constant �1.

We �nally determine the values of the constants �t. Since this part of the proof is equally

clear for general T as for T = 2, we show it for the general case. When the PS constraint is

not imposed, we use the IEE (10). There exists a value e� such that e� = E
h
e
�rf tct
e��t

i
for all

t. This yields, for all t,

e� =
e�rf t+�t

e��t
E
h
e
Pt
s=1 �srs

i
=
e�rf t+�t

e��t

tY
s=1

E
�
e�srs

�
;

i.e. (14) with � = �1.
When the PS constraint is imposed, we use (9). There exists a value e�� such that e�� =

E
h
e
rf te��t

ct

i
for all t. This yields e�� = e��terf t��tE

h
e�

Pt
s=1 �srs

i
= e��terf t��t

Qt
s=1E

�
e��srs

�
,

i.e. (14) with � = 1.
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The remaining step is to show that the agent will not wish to undertake global deviations,

e.g. jointly reducing e¤ort and saving. Since this proof is equally clear for general  as for

log utility, we delay the proof until Section 3.1.2 which demonstrates the result for general

CRRA utility functions.

We now discuss the economics behind the optimal contract. (11) shows that time-t

consumption should be linked not only to the signal in period t, but also the signals in all

previous periods. Therefore, exerting e¤ort in a particular period boosts income not only

in that period, but also in all future periods. We call this the �deferred reward principle�:

since the CEO is risk-averse, it is optimal to spread the reward for e¤ort across all future

periods rather than concentrate it in the period in which e¤ort is exerted. This prediction is

consistent with Boschen and Smith (1995), who �nd that changes in �rm value has a much

greater e¤ect on future rather than contemporaneous pay.

We now consider how the contract sensitivity changes over time. (11) shows that, in an

in�nite horizon model (T = 1) with a constant target action (a�t = a�), the sensitivity of

the contract is constant and given by:

�t = � =
�
1� e��

�
g0(a�): (20)

The time-independent sensitivity is intuitive: the contract must be su¢ ciently sharp to

compensate for the disutility of e¤ort, and the latter is constant when the target action does

not change over time. However, in a �nite model, the contract�s sensitivity is increasing

over time, even if the target action is constant. The intuition for this �increasing incentives

principle� is similar to the above deferred reward principle: there are fewer remaining periods

over which to smooth out the reward for e¤ort, and so the CEO must earn a greater reward

in each period. As in Gibbons and Murphy (1992), our model generates the prediction that

CEOs closer to retirement must have sharper contracts. While Gibbons and Murphy obtain

this result by invoking career concerns, our explanation is that consumption smoothing

possibilities decline towards retirement.

Next, we study the impact of manipulation on the optimal contract. The possibility of

manipulation has three main e¤ects. First, it ensures that the CEO remains sensitive to the

stock price after his retirement in period L: he remains sensitive until period L +M . This
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is to deter him from manipulating the signal just before departure. Second, it causes the

contract sensitivity to be higher in each period (compared to a case in which manipulation

is impossible), because the contract must now satisfy the NM constraint as well as the IC

constraint. Third, it a¤ects how the contract sensitivity trends over time. If this sensitivity

were time-independent, the CEO would have an incentive to manipulate the time-t return

upwards, thus increasing his time-t consumption. Even though the return at time t + it

will be lower, the e¤ect on the CEO�s consumption is smaller in present value terms owing

to discounting. Therefore, an increasing sensitivity is necessary to deter manipulation. For

example, in an in�nite horizon model (T =1) with a constant target action (a�t = a�), the

possibility of manipulation changes the contract from the constant (20) to

�t =
�
1� e��

�
e�tg0 (a�)

The e�t term demonstrates the increasing slope. The more impatient the CEO, the greater

the incentives to manipulate, and so the greater the required increase in sensitivity over

time to deter manipulation. In a �nite horizon model, the slope is already increasing if

manipulation is ruled out; the possibility of manipulation causes it to rise even faster. I

With a constant target action, the e¤ect of the NM constraint on the speed with which

the contract�s sensitivity rises over time depends only on the CEO�s impatience �. With a

non-constant target action, it depends on � = supt�L (e
��tg0 (a�t )) the maximum discounted

sensitivity during the CEO�s working life. Let s � L denote the period in which e��tg0 (a�t ) is

highest. The CEO has an incentive to increase rs at the expense of the signal in any t within

M periods of s. Therefore, the sensitivity for all t within M periods of s must increase, to

remove these incentives. However, this in turn has a knock-on e¤ect: since the sensitivity for

t = s�M has now risen, the CEO now has an incentive to increase rs�M at the expense of

rs�2M , and so on. Therefore, the sensitivity at s forces upward the sensitivity in all periods

t � L +M , even those more than M periods away from s, because of the knock-on e¤ects.

This explains why the contract in all periods t � L+M depends on � in equation (13).

Finally, the possibility of private savings a¤ects the constant �t but not the sensitivity of

the contract �t. Since private saving does not a¤ect the agent�s action, the optimal sensitivity

of CEO pay to the action is unchanged. Instead, the possibility of private saving a¤ects the
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time trend of the contract. The constant �t is given by (14). When private savings are

allowed (� = 1), the second term in (14) declines more slowly over time than if private

savings are ruled out (� = �1). Thus, the need to deter private savings leads to CEO pay
having a greater upward trend over time than in the absence of this constraint. This result

is consistent with He (2008b), who �nds that the optimal contract under private savings

involves a wage pattern that is non-decreasing over time.

2.4 Optimal Contract, Log Utility, Numerical Example

This section uses a simple numerical example to show most clearly the deferred reward and

increasing incentives principles, as well as the e¤ect of manipulation on the optimal contract.

We �rst set T = 5, L = 3, � = 0 and g0 (a�t ) = 1 for all t, and assume that manipulation is

impossible. Applying L�Hopital�s rule to (12), the optimal contract is given by:

ln c1 =
r1
5
+ �1

ln c2 =
r1
5
+
r2
4
+ �2

ln c3 =
r1
5
+
r2
4
+
r3
3
+ �3

ln c4 =
r1
5
+
r2
4
+
r3
3
+ �4

ln c5 =
r1
5
+
r2
4
+
r3
3
+ �5:

This example shows both principles at work. First, there is consumption smoothing: an

increase in r1 augments log consumption (i.e. the CEO�s utility) in all future periods by the

same amount. Second, the sensitivity increases over time, from 1=5 to 1=4 to 1=3. Since

the CEO takes no action from t = 4 onwards, his consumption does not depend on r4 or r5.

However, his consumption at t = 4 and t = 5 continues to depend on r1, r2 and r3 as his

earlier e¤orts a¤ect his wealth, from which he consumes until death.

If the CEO can manipulate earnings, the contract changes to:
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ln c1 =
r1
5
+ �1

ln c2 =
r1
5
+
r2
4
+ �2

ln c3 =
r1
5
+
r2
4
+
r3
3
+ �3

ln c4 =
r1
5
+
r2
4
+
r3
3
+
r4
2
+ �4

ln c5 =
r1
5
+
r2
4
+
r3
3
+
r4
2
+ �5:

The possibility of manipulation means that r4 now a¤ects the CEO�s consumption, otherwise

he would have an incentive to boost r3 at the expense of r4. However, the contract is

unchanged for t � 3, i.e. for the periods in which the CEO works. Even under the original
contract, there is no incentive to manipulate at t = 1 or t = 2 because two conditions are

satis�ed. First, there is no discounting, and so the negative e¤ect of manipulation on future

earnings reduces the CEO�s lifetime utility by as much as the positive e¤ect on current

earnings increases it. Second, because the marginal cost of e¤ort is constant across periods,

the lifetime reward for increasing the signal is the same regardless of the period in which

the higher signal arises. For example, increasing r1 by one unit raises consumption in each

period by 1=5 units, and so 1 unit (undiscounted) in total. Decreasing r2 by one unit reduces

consumption in each period by 1=2 units, and so 1 unit in total. Again, the costs and bene�ts

of manipulation are the same, so there is no incentive to manipulate even under the original

contract.

If either of the above conditions are violated, then the contract must change in all periods

when manipulation is possible. First, we allow for discounting by changing � to 0:1, and

keeping all other parameters constant. The optimal contract is now
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ln c1 =
1� e�0:1

1� e�0:5
r1 + �1

ln c2 =
1� e�0:1

1� e�0:5
r1 +

1� e�0:1

1� e�0:4
r2 + �2

ln c3 =
1� e�0:1

1� e�0:5
r1 +

1� e�0:1

1� e�0:4
r2 +

1� e�0:1

1� e�0:3
r3 + �3

ln c4 =
1� e�0:1

1� e�0:5
r1 +

1� e�0:1

1� e�0:4
r2 +

1� e�0:1

1� e�0:3
r3 + �4

ln c5 =
1� e�0:1

1� e�0:5
r1 +

1� e�0:1

1� e�0:4
r2 +

1� e�0:1

1� e�0:3
r3 + �5

under no manipulation. If manipulation is possible with M = 1, the contract changes to

ln c1 =
1� e�0:1

1� e�0:5
r1 + �1

ln c2 =
1� e�0:1

1� e�0:5
r1 +

(1� e�0:1) e0:1

1� e�0:4
r2 + �2

ln c3 =
1� e�0:1

1� e�0:5
r1 +

(1� e�0:1) e0:1

1� e�0:4
r2 +

(1� e�0:1) e0:2

1� e�0:3
r3 + �3

ln c4 =
1� e�0:1

1� e�0:5
r1 +

(1� e�0:1) e0:1

1� e�0:4
r2 +

(1� e�0:1) e0:2

1� e�0:3
r3 +

(1� e�0:1) e0:3

1� e�0:2
r4 + �4

ln c5 =
1� e�0:1

1� e�0:5
r1 +

(1� e�0:1) e0:1

1� e�0:4
r2 +

(1� e�0:1) e0:2

1� e�0:3
r3 +

(1� e�0:1) e0:3

1� e�0:2
r4 + �5:

When manipulation is possible, not only do c4 and c5 now depend on r4, but also only does

the possibility of manipulation mean that r4 a¤ects the CEO�s consumption, but it also

the contract�s sensitivity increases more rapidly between t = 1 and t = 3. Since the CEO

is impatient, the old contract gives him an incentive to sacri�ce future returns for current

earnings. Therefore, a more rapidly increasing slope is needed so that future returns must

have a greater e¤ect on his consumption to remove these incentives.

Second, we revert to � = 0 and instead vary the marginal cost of e¤ort by setting

g0 (a�1) = g0 (a�2) = 1 and g
0 (a�3) = 3. If manipulation is impossible, the optimal contract is
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ln c1 =
r1
5
+ �1

ln c2 =
r1
5
+
r2
4
+ �2

ln c3 =
r1
5
+
r2
4
+
2

3
r3 + �3

ln c4 =
r1
5
+
r2
4
+
2

3
r3 + �4

ln c5 =
r1
5
+
r2
4
+
2

3
r3 + �5:

Since the marginal cost of e¤ort is high at t = 3, the contract sensitivity must be high at

t = 3 to satisfy the IC condition. However, this now gives the CEO incentives to engage in

manipulation. If he manipulates r2 downwards by 1 unit to augment r3 by 1 unit, lifetime

consumption falls by 1 unit and rises by 2 units. Therefore, the sensitivity of the contract

at t = 2 must increase to remove these incentives. This increased sensitivity at t = 2 in

turn augments the required sensitivity at t = 1, else the CEO would manipulate to reduce

r1 and increase r2. Therefore, even though the maximum release lag M is 1 and so the CEO

cannot manipulate r1 to a¤ect r3, the high sensitivity at r3 still a¤ects the sensitivity at r1

by changing the sensitivity at r2. The new contract is given by:

ln c1 =
2

5
r1 + �1

ln c2 =
2

5
r1 +

r2
2
+ �2

ln c3 =
2

5
r1 +

r2
2
+
2

3
r3 + �3

ln c4 =
2

5
r1 +

r2
2
+
2

3
r3 + r4 + �4

ln c5 =
2

5
r1 +

r2
2
+
2

3
r3 + r4 + �5:

2.5 Implementation of the Optimal Contract: the Dynamic In-

centive Account

Taking �rst di¤erences of (11) yields:
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ln ct � ln ct�1 = �trt + �t � �t�1: (21)

The contract thus prescribes the percentage change in CEO pay (ln ct� ln ct�1) as a function
of the �rm�s return rt, i.e. the percentage change in �rm value. The relevant measure of

incentives is therefore the elasticity of CEO pay to �rm value; this elasticity must be at least

�t to ensure incentive compatibility. Empiricists have used a number of statistics to measure

incentives �for example, Jensen and Murphy (1990) calculate �dollar-dollar�incentives (the

dollar change in CEO pay for a dollar change in �rm value) and Hall and Liebman (1998)

estimate �dollar-percent� incentives (the dollar change in CEO pay for a percentage �rm

return.) By contrast, Murphy (1999) advocates the elasticity measure (�percent-percent�

incentives) on empirical grounds: it is invariant to �rm size, and �rm returns have much

greater explanatory power for percentage than dollar changes in pay. However, he notes

that �elasticities have no corresponding agency-theoretic interpretation.�The above analysis

provides a theoretical justi�cation for using elasticities to measure incentives. Edmans,

Gabaix and Landier (2009) showed that percent-percent incentives are the optimal measure

if e¤ort has a multiplicative e¤ect on both CEO utility and �rm value.5 Their result was

derived in a one-period model with a risk-neutral CEO; we extend it to a dynamic model

with a risk-averse CEO who can manipulate the stock price and privately save. Our setting

contains the above two features: the utility function in (1) exhibits multiplicative preferences,

and e¤ort has an additive e¤ect on the �rm�s percentage return (equation (2)) and thus a

multiplicative e¤ect on �rm value. In terms of real variables, percent-percent incentives equal

the fraction of total pay that is comprised of stock. The required fraction (�t) is independent

of total pay: if the CEO�s outside option doubles, total pay doubles. Therefore, the value

of equity must double to ensure that the fraction of total pay invested in equity remains the

same �the fraction is scale-independent.

To ensure that percent-percent incentives equal �t in each period t, the contract can

be implemented in the following manner. The present value of the CEO�s expected pay is

escrowed into a �Dynamic Incentive Account� (�DIA�) at the start of period t = 1.6 A

5�Percent-percent�incentives are also the optimal measure in Peng and Roell (2008).
6We present one possible implementation of the optimal contract; other implementations are possible.
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proportion �1 of the Incentive Account is invested in the �rm�s stock and the remainder

in cash. At the start of each subsequent period t, this portfolio is rebalanced so that the

proportion invested in the �rm�s stock is �t. This dynamic rebalancing addresses a common

problem of option compensation: if �rm value declines, the option�s delta falls and so its

incentive e¤ect is reduced. Unrebalanced stock compensation su¤ers from the same problem,

even though the delta of a share is 1 regardless of �rm value. The relevant measure of

incentives is not the delta of the CEO�s portfolio (which represents the dollar change in

CEO wealth for a dollar change in �rm value) but the proportion of CEO wealth which is

in �rm shares (which represents percent-percent incentives). When the stock price falls, the

value of the CEO�s shares declines but his cash is una¤ected. Therefore, stock constitutes

a smaller proportion of the CEO�s wealth, which reduces his incentives. The DIA addresses

this problem by exchanging cash for stock, to maintain the fraction of stock in the account at

�t. Importantly, the additional stock is accompanied by a reduction in cash �it is not given

for free. This addresses a major concern with repricing options after stock price declines to

restore incentives �the CEO is rewarded for failure. By contrast, if the stock price rises,

the value of the stock increases and so becomes a higher fraction of the account. Therefore,

some of his shares can be sold for cash (thus reducing the CEO�s risk) without incentives

falling below �t. Indeed, Fahlenbrach and Stulz (2008) �nd that decreases in CEO ownership

typically occur after good performance.

The DIA thus features dynamic rebalancing to ensure that the IC constraint is satis�ed in

each period. This rebalancing is state-dependent: if the stock price rises (falls), stock is sold

(bought) for cash. The second key feature of the DIA is time-dependent vesting: the CEO

can only withdraw a fraction �t of the account in each period for consumption (we will later

derive �t in a speci�c case. This gradual vesting ensures that the NM constraint is satis�ed in

each period: it prevents the CEO from manipulating earnings and then cashing out his entire

equity before the manipulation is discovered. Moreover, vesting is gradual not only during

the CEO�s tenure but also after retirement. The CEO is not paid the entire DIA in period

L. Instead, it only fully vests in period L +M , to ensure that all manipulation has been

For example, rather than placing the entire present value of the CEO�s future pay in the account at the
start, only his t = 1 reservation wage could be invested initially. In each subsequent period, the reservation
wage of that period is added to the account.
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reversed. Therefore, the CEO�s income remains sensitive to �rm returns after retirement, to

prevent him from acting myopically (via manipulation or taking large risks) just before his

departure. Commentators have argued that the latter problem was particularly important

in the recent �nancial crisis. For example, Angelo Mozilo, the former CEO of Countrywide

Financial, made over $100m from stock sales prior to his �rm�s collapse; a November 20,

2008 Wall Street Journal article entitled �Before the Bust, These CEOs Took Money O¤

the Table�provides further examples. More broadly, Johnson, Ryan and Tian (2009) �nd

a positive correlation between corporate fraud and unrestricted (i.e. immediately vesting)

stock compensation.

In sum, the DIA has two key features. Time-dependent vesting ensures that the CEO

does not manipulate earnings, and allows him to smooth consumption. State-dependent re-

balancing guarantees that the CEO has su¢ cient incentives to exert e¤ort, while minimizing

the risk that he bears. Some existing compensation schemes satisfy the �rst feature, but

not the second. For example, restricted stock and options vest along a given time schedule,

irrespective of �rm performance. Long-vesting securities are e¤ective in satisfying the NM

constraint but not the IC constraint �if �rm value falls, they represent a smaller percentage

of the CEO�s wealth and so have a weaker incentive e¤ect. Hence, the DIA is critically

di¤erent from the restricted securities observed empirically.

Time-dependent vesting is not the only schedule seen in practice. Bettis, Bizjak, Coles

and Kalpathy (2008) provide evidence that performance-based (i.e. state-dependent) vesting

is becoming increasingly common. State-dependent vesting is also featured in the �Bonus

Bank�advocated by Stern Stewart, where the amount of the bonus that the executive can

withdraw depends on the total bonuses accumulated in the bank. Under performance vesting,

the vesting schedule is accelerated if the �rm performs strongly. This may induce the CEO

may be able to manipulate earnings upwards to accelerate vesting, and sell his equity before

the manipulation is reversed. In the DIA, strong performance allows the CEO to sell his

shares for cash, but critically the cash is maintained within the DIA to allow for future stock

repurchases if the stock price later falls. The combination of time-dependent vesting and

state-dependent rebalancing thus achieves a di¤erent result from state-dependent vesting �

the two separate features achieve the two goals of deterring manipulation and maintaining
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e¤ort incentives.

We demonstrate the workings of the DIA in an in�nite horizon model (T = 1) with a
constant target action (a�t = a�). The optimal contract sensitivity is constant and given by

(20). The CEO�s consumption is:

ct = c0e
�Rt+Gt; where G � rf � �+ � lnE

�
e���(a

�+�)
�
: (22)

Let A0 = E0

hPT
t=1 e

�rf tct

i
be the initial value of the DIA, i.e. the present value of future

earnings. A fraction � is invested in the �rm�s stock and the remainder in cash, so that the

account evolves according to: dAt=At = (rf � �) dt+ ��dZt. The CEO withdraws a fraction

� of the account in each period, so that his consumption is ct = �At. This is intuitive, since

an agent with log utility wishes to consume a constant fraction of his wealth in each period,

and this fraction is independent of the rate of return on his wealth. From (22), we obtain

� = �� (1 + �)�2�2=2.
If the PS constraint is not imposed, we have � = � and the inverse marginal utility, ct, is

a martingale so that the agent does not wish to reallocate consumption across time periods

to increase his marginal utility. Elementary calculations lead to A0 = e�=
�
e� � 1

�
. If the

PS constraint is imposed, we have � < �. The agent would like to invest zero wealth in the

stock as it carries a zero risk premium, but he is forced to invest � and bear unrewarded risk.

Therefore, the agent will wish to save to insure himself against this risk. To remove these

incentives, we must have � < � so that the account grows faster than it vests, thus providing

automatic saving for the agent. We also have A0 = e�=

�
e
��lnE

h
e��(a

�+�)
i
�lnE

h
e+�(a

�+�)
i
� 1
�
.

3 Extensions

This section analyzes extensions to the core model. Section 3.1 considers autocorrelated

signals and general CRRA utility functions, and Section 3.2 studies continuous time. The

economics of the optimal contract in Section 2 are robust to both extensions.
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3.1 General CRRA Utility and Autocorrelated Signals

The core model assumes that the signal rt was the �rm�s stock return. This is an attractive

interpretation for a number of reasons: it allows the optimal contract to be implemented

using the �rm�s securities, and it allows us to assume that the noises �t are uncorrelated.

However, in private �rms, there is no stock return, and so alternative signals of e¤ort must

be used such as pro�ts. Unlike stock returns, shocks to pro�ts may be serially correlated.

This subsection extends the model to such a case.

We now assume that the noises �1; :::; �T follow an AR(1) process with autoregressive

parameter �, i.e. �t = ��t�1 + "t; � 2 [0; 1]; where "t are independent with an interval

support ("t; "t) and the bounds may or may not be �nite. To simplify the proofs, we make

the following technical assumption:

g0(a�t�1) � �g0(a�t ); for t � L: (23)

We also now extend the model to allow for a general CRRA utility function.

3.1.1 Optimal Contract

Theorem 2 The optimal contract pays the CEO ct in period t, where ct satis�es:

ln ct =
tX

s=1

�srs + �trt + �t; (24)

for deterministic constants �s; �t and �t. �t is de�ned inductively as:

�t = �(�t+1 + �t+1) for all t: (25)

Without the NM constraint,

�t = �t = 0 for t > L; (26)

�t =
Bt (g

0(a�t )� �t)PT
s=tBse(1�)(�s��t��ta

�
t )E

�
e(1�)[

Ps
m=t+1(�m+�m)"m+

Ps
m=t+1 �ma

�
m+�sa

�
s]
� for t � L:
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With the NM constraint,

�t = �t = 0 for t > L+M;

�t =
e(1�)(�L+M��t��ta

�
t )Et

h
e(1�)

PL+M
m=t+1(�m+�m)"m+

PL
m=t+1 �ma

�
m

i
�D �Bt�tPT

s=tBse(1�)(�s��t��ta
�
t )E

�
e(1�)[

Ps
m=t+1(�m+�m)"m+

Ps
m=t+1 �ma

�
m+�sa

�
s]
� for t � L+M:

Let � = 1 denote the case when private savings are allowed (and so the PS constraint is

imposed) and � = �1 if they are ruled out (and so the PS constraint is not imposed). The
value of �t is given by:

�t = �+ rf t+ lnBt + �
tX

s=1

lnE
�
e��(�s+�s)(a

�
s��a�s�1+"s)

�
for t � T; (27)

where � is chosen to ensure that the agent is at his reservation utility:

TX
t=1

exp
�
��t+ (1� )

�Pt
s=1�srs + �trt + �t � g (at)

��
1� 

= u;

and D is the lowest constant such that:

e(1�)(�L+M��t��ta
�
t )Et

h
e(1�)

PL+M
m=t+1(�m+�m)"m+

PL
m=t+1 �ma

�
m

i
�D � Btg

0(a�t ); for all t � L:

Proof See Appendix.

Taking �rst di¤erences of (24) and using (25) yields:

ln ct � ln ct�1 = (�t + �t) (rt � �rt�1) + �t � �t�1: (28)

We can therefore see the e¤ect of allowing for general CRRA utility functions and autocorre-

lated noise. With independent noise (� = 0), �t = 0 and so contracts (24) and (28) reduce to

(11) and (21). Therefore, moving from log to CRRA utility but retaining independent noise

(i.e. continuing to interpret rt as the stock return) has little e¤ect on the functional form

of the optimal contract. As before, the contract links the percentage change in CEO pay to

the absolute signal in period t �i.e. the percentage change in �rm value. Hence, �percent-

percent� incentives remain optimal. The consumption smoothing and increasing incentive
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principles continue to hold, and the contract can be implemented using a dynamic incentive

account. The qualitative e¤ect of the NM and PS constraints on the optimal contract is the

same as in Section 2. The key di¤erence is that the parameters � and � are somewhat more

complex.

In the presence of autocorrelated signals, the �t�s are no longer zero. From (28), the

optimal contract now links the percentage change in CEO pay in period t to innovations

in the signal (rt � �rt�1) between t and t � 1, rather than the absolute signal in period t.
This is intuitive: since good luck (i.e. a positive shock) in the last period carries over to the

current period, the contract should control for the last period�s signal to avoid paying the

CEO for luck. In particular, if returns follow a random walk, and if also a�t = a� and T = L

for simplicity, then the contract has a constant sensitivity:

ln ct = g0(a�)rt + �t

and (28) becomes

ln ct � ln ct�1 = g0 (a�) (rt � rt�1) + �t � �t�1:

The percentage change in pay is linked to the absolute innovation in the signal. High pro�ts

in period t do not improve compensation if pro�ts were equally high in the previous period.

3.1.2 Global Constraints

We have thus far analyzed the �rst stage of the derivation of the optimal contract, which is

to �nd the best contract that satis�es the local constraints. The second stage is to verify that

this contract also satis�es the global constraints, i.e. the agent does not wish to undertake

global deviations. At present, the analysis assumes either  = 1 or � = 0, and does not

impose the NM constraint. It will be generalized in a later draft.

To consider global deviations, we must distinguish between the CEO�s income and his

consumption. The contract in Theorem 2 pays the agent an income yt, given by

yt = exp

 
tX

s=1

�s(�s + as) + �t(�t + at) + �t

!
; (29)
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where the constants �s; �t and �t are as in (25), (26) and (27). Without the PS constraint,

the agent�s consumption ct simply equals his income yt. When the agent can privately save,

these two variables are distinct.

The following Theorem shows that if the cost function g is su¢ ciently convex, the CEO

has no pro�table global deviation. Consider the following assumption:

CONV : 4 sup g02
�
min

�
e(sup�t(at�a

�
t )+sup�t(a

�
t�at))=2

1�minf�; 1g ; T

�
+maxf1� 


; 0g
�
� inf g00 < 0

(30)

where

� = exp

�
sup
s

�
��+ �s(as � a�s) + (1� )

�
(�s � g(a�s))� (�s�1 � g(a�s�1)) + lnE(e

�ses)
�	
=2

�
:

(31)

Theorem 3 (No global deviations are pro�table.) Consider the maximization problem:

max
ct;xt adapted

E

"
TX
t=1

e��t
(cte

�g(at))1�

1� 

#
, for  6= 1

max
ct;xt adapted

E

"
TX
t=1

e��t(ln ct � g (at))

#
, for  = 1;

with
PT

t=1 e
�rf t (yt � ct) � 0 and y satisfying (29). Assume  = 1 or � = 0, and do not

impose the NM constraint. If assumption (30) holds, the solution of this problem is ct � yt

for all t � T and at � a�t for all t � L, with probability 1.

3.2 Continuous Time

We now consider the continuous-time analog of the model. The CEO�s utility is given by:

U =

8><>:
E

�R T
0
e��t

(cte�g(at))
1��1

1� dt

�
if  6= 1

E
hR T
0
e��t (ln ct � g (at)) dt

i
if  = 1:

(32)

For now, we consider the log utility case; in a later draft we will extend this section to
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general CRRA utility functions. The �rm�s returns evolve according to:

dRt = atdt+ �tdZt

where Zt is a Brownian motion, and the volatility process �t is deterministic. We normalize

R0 = 0 and the risk premium to zero, i.e. the expected rate of return on the stock is rf in

each period.

Theorem 4 (Optimal contract, continuous time, log utility). Let �t denote the stock volatil-
ity. The optimal contract pays the CEO ct at each instant, where ct satis�es:

ln ct =

Z t

0

�sdrs + �t, (33)

where �s and �t are deterministic functions. Without the NM constraint:

�t =

(
e��tg0(a�t )R T
t e���d�

for t � L

0 for t > L:
(34)

With the NM constraint:

�t =

(
�R T

t e���d�
for t � L+M

0 for t > L+M;
(35)

where � = sup0�s�L (e
��sg0 (a�s)). Let � = �1 denote the case if private savings are ruled

out (and so the PS constraint is not imposed), and � = 1 if they are allowed (and so the PS

constraint is imposed). The value of �t is:

�t = (rf � �) t�
Z t

0

�sE [drs] + �

Z t

0

�2s�
2
s

2
ds+ �; (36)

where � ensures that the agent is at his reservation utility:

u =

Z T

0

e��t
�
�+ (rf � �) t+ �

Z t

0

�2s�
2
s

2
ds� g (a�t )

�
:

Proof (Heuristic). The Appendix presents a formal proof. Here, we provide a heuristic proof

that conveys the �essence�of the economic argument. We used the techniques introduced
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in Sannikov (2008). Consider the action / manipulation policy (a;m) = (at;mt)t�0. By the

martingale representation theorem, the agent�s utility U =
R T
0
e��t (ln ct � g (a�t ) dt) can be

written:

U = U0 +

Z T

0

Yt (drt � a�tdt) (37)

for a constant U0 and a process Yt adapted to the �ltration induced by (rt)t�0. The IC

constraint (7) becomes:

ICa: Yt � e��tg0 (a�t ) , for t � L: (38)

If there is no NM constraint, then the cost-minimizing incentive scheme entails the minimum

sensitivity, so Yt = e��tg0 (a�t ) for t � L, and Yt = 0 for t > L.

The NM constraint is:

Yt = Et [Yt+i] for 0 � t � L, 0 � i �M: (39)

The cost-minimizing incentive scheme entails minimal sensitivities Yt, subject to (38) and

(39). The solution is Yt = sups�L (�sg
0 (a�s)) for t � L+M , and Yt = 0 for t > L+M .

The above considers a contract in terms of utility. We now translate it into a contract in

terms of consumption. Using again the martingale representation theorem, we can write:

ln ct = �t +

Z t

0

�st�sdzs;

where (�st)s�t�T is an Ft�adapted process, and �t is a deterministic number. �st is the

sensitivity of time-t consumption to a past shock, drs. Intuitively, to minimize the cost of the

contract while keeping the agent�s utility �xed, the principal wishes to smooth consumption.

Therefore, for a given shock at time s, the sensitivity of all future consumptions should be

the same. We thus have, for all t � s, �st = �s, for some value �s. Hence, we can calculate:

U =

Z T

0

e��t (ln ct � g (a�t )) = K+

Z T

0

e��t
�Z t

0

�s�sdzs

�
dt = K+

Z T

0

�Z T

s

e��tdt

�
�s�sdzs:

We require that U = U0 +
R T
0
Ys�sdzs. This implies �s = YsR T

s ��d�
, as given in Theorem 4.

The expression for �t comes from the PS constraint (9), or, if it is not imposed, the IEE

(10).
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The implications of the optimal contract are the same as for discrete time, except that

the rebalancing of the account is now continuous.

3.3 The Maximum E¤ort Principle

The focus of this paper is to derive the optimal contract to implement a given path of e¤ort

levels. EG shows that, if the �rm is su¢ ciently large, the maximum e¤ort level is optimal.

While they considered a discrete time, one-period setting, we extend this maximum e¤ort

principle to continuous time. The analysis is still in progress; this section contains the results

obtained thus far.

We consider a continuous-time model where earnings follow dDt=Dt = (at + k) dt+�dZt.

Let S = D0=r denote the baseline �rm size.

Theorem 5 Fix u. For any " > 0 there exists S� large enough such, if S > S�, the princi-

pal�s pro�t from the contract in Theorem 4 di¤ers from his pro�t from the optimal contract

by at most ".

Hence, we show that contract requiring maximum e¤ort is optimal, within an ". The

proof is will be made available soon. We suspect that an analogous, and stronger result,

might be available in discrete time. We are currently researching this issue.

4 Conclusion

This paper studies optimal CEO compensation in a dynamic setting in which the CEO

consumes in each period, can privately save, and may manipulate current earnings at the

expense of future pro�ts. The optimal contract involves consumption smoothing, where e¤ort

is rewarded in all future periods, and the relevant measure of incentives is the percentage

change in pay for a percentage change in �rm value. This required sensitivity is constant over

time in an in�nite horizon model where manipulation is impossible. If the horizon is �nite,

the contract�s slope rises over time since, as the CEO approaches retirement, he has fewer

periods over which to be rewarded for e¤ort. A rising slope also arises if the contract needs to

prevent manipulation. This is to o¤set the fact that the cost of manipulation is su¤ered only
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in the future and thus has a discounted e¤ect on the CEO�s utility. Deterring manipulation

also requires the CEO to remain sensitive to the �rm�s stock price after retirement. While

the possibility of manipulation a¤ects the sensitivity of pay to �rm performance, the option

to privately save impacts the time trend in total pay. Speci�cally, it augments the rise in

compensation over time, to deter the CEO from saving to �nance future consumption.

The optimal contract can be implemented using a Dynamic Incentive Account. The

CEO�s expected pay is placed into an account, and a certain proportion is invested in the

�rm�s stock and the remainder in cash. The account features both state-dependent rebal-

ancing and time-dependent vesting. As �rm value changes, the account is continuously

rebalanced so that the proportion invested in the stock remains at the required threshold.

This ensures that the CEO has adequate incentives even if the stock price falls. The gradual

vesting of the account, even after retirement, allows the CEO to consume while simultane-

ously deterring myopic actions.

Our key results are robust to a broad range of settings: any CRRA utility function,

autocorrelated noise, continuous time and all noise distributions. However, our setup imposes

some limitations, in particular that the CEO remains with the �rm for a �xed period.

It would be interesting to examine how the optimal contract might chance if �rings and

voluntary departures are possible. For example, if the CEO�s outside option is stochastic, he

may leave mid-way through the contract. Conversely, if the CEO becomes wealthy, his utility

from shirking rises, given multiplicative preferences. This increases the cost of providing

incentives and may induce the principal to replace the CEO. We leave such extensions to

future research.
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A Proofs

A.1 Proof of Theorem 1

This is a direct corollary of Theorem 2.

A.2 Proof of Theorem 2

We �rst analyze the case without the NM constraints. We consider the NM constraints at

the end of the proof.

Case t > L. For t > L, rt is independent of the CEO�s actions. Since the CEO is also

strictly risk averse, the e¢ cient contract will have ct for t > L depend only on r1; :::; rL.

Therefore either the PS constraint (9) or IEE (10) immediately give

ln ct(r1; :::; rt) = ln cL(r1; :::; rL) + �t; (40)

for some constants �t independent of r1; r2; ::: that will be computed explicitly at the end of

the proof.

Case t = L: The IC in period L requires that

0 2 argmax
"�0

U(r1; :::; rL�1; a
�
L + �L + "): (41)

Since g is di¤erentiable, this yields (7) (see e.g. EG, Lemma 6), i.e.

d

d"�
ln cL (r1; :::; a

�
L + �L + ") j"=0

"
TX
s=L

Bt

#
� BLg

0(a�L); for  = 1;

d

d"�

cL (r1; :::; a
�
L + �L + ")1�

1� 
j"=0

"
TX
s=L

Bte
(1�)kt

#
� BLcL (r1; :::; a

�
L + �L + ")1� g0(a�L); for  6= 1:

and so
d

d"�
ln cL (r1; :::; a

�
L + �L + ") � Btg

0(a�t )PT
s=LBte(1�)kt

:= �L: (42)

We now show that indeed (42) holds with equality. If a�L is interior, this follows immedi-

ately from the IC requirement analogous to (41) but for " � 0. Here we prove this fact for
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the case a�L = aL. The result is intuitive, as a binding constraint will minimize the variability

in the agent�s pay and constitute e¢ cient risk-sharing. First, condition (42) implies that for

any r0 � r (see e.g. EG, Lemma 4)

ln cL (r1; :::rL�1; r
0)� ln cL (r1; :::rL�1; r) � �L � (r0 � r): (43)

Consider now the contract fc0tgt�T that coincides with fctgt�T for t < L, ln c0t = ln c
0
L+�t for

t > L and �t as in (40), and such that c0L(r1; :::; rL) = eB(r1;:::;rL�1)+�LrL , where B(r1; :::; rL�1)

is chosen to satisfy

EL�1

"
(c0L)

1�
(r1; :::; rL)

1� 

#
= EL�1

"
(cL)

1� (r1; :::; rL)

1� 

#
: (44)

Note that the condition (43) guarantees that the random variable ln cL (r1; :::rL�1; erL) is
weakly more dispersed than ln c0L (r1; :::rL�1; erL) : It also follows from the IC that both

ln cL (r1; :::rL�1; �) and ln c0L (r1; :::rL�1; �) are weakly increasing. Those facts together with
(44) imply that for the convex function  and increasing function �, where  �1(x) = x1�

1�

and �(x) = e(1�)x

1� , we have (see EG, Lemmas 1 and 2):

EL�1[c
0
L(r1; :::; rL)] = EL�1[ ���ln c0L(r1; :::; rL)] � EL�1 [ � � � ln cL(r1; :::; rL)] = EL�1[cL(r1; :::; rL):

Consequently the contract fc0tgt�T is cheaper than fctgt�T :
Integrating out (42) that holds with equality, the optimal contract c is given by:

ln c(r1; :::; rL) = B(r1; :::; rL�1) + �LrL + �L;

for some function B.

Case t < L. Suppose that for all t0, L � t0 > t, the optimal contract ct0 is such that

ln ct0(r1; :::; rt0) = B(r1; :::; rt) +
t0X

s=t+1

�srs + �t0rt0 + �t0 ;
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for some function B as well as �s and �t0 as in the Theorem. The IEE yields

1

c�t
= e�rf

Bt

Bt+1

Et

�
1

c�t+1

�
= Et

�
e(�t+1+�t+1)rt+1

�
e�rf+lnBt�lnBt+1+B(r1;:::;rt)+�t+1 : (45)

whereas the PS constraint yields

c�t = erf
Bt+1

Bt

Et
�
c�t+1

�
= Et

�
e�(�t+1+�t+1)rt+1

�
e�B(r1;:::;rt)+rf��t+1+lnBt+1�lnBt : (46)

In either case we therefore have

ln ct = B(r1; :::; rt) + �(�t+1 + �t+1)rt + �t = B(r1; :::; rt) + �trt + �t: (47)

Just as in the case t = L, the IC implies that:

Btc
1�
t �t +

d

d"�
B (r1; :::rt�1; a

�
t + �t + ")

TX
s=t

BsEt
�
c1�s

�
� Btct

1�g0(a�t ); (48)

Btc
1�
t �t +

d

d"�
B (r1; :::rt�1; a

�
t + �t + ") c1�t

TX
s=t

Bse
(1�)(�s��t��ta�t )�

� E
�
e(1�)[

Ps
m=t+1(�m+�m)"m+

Ps
m=t+1 �ma

�
m+�sa

�
s]
�
� Btct

1�g0(a�t );

d

d"�
B (r1; :::rt�1; a

�
t + �t + ") �

� Bt (g
0(a�t )� �t)PT

s=tBse(1�)(�s��t��ta
�
t )E

�
e(1�)[

Ps
m=t+1(�m+�m)"m+

Ps
m=t+1 �ma

�
m+�sa

�
s]
� := �t:

The second equivalence above follows from the fact that for s > t

Et
�
c1�s

�
= c1�t e(1�)(�s��t��ta

�
t )Et

h
e(1�)(

Ps
m=t+1 �m(a

�
m+�m)+�S(a

�
s+�s)��t�t)

i
=

= c1�t e(1�)(�s��t��ta
�
t )Et

h
e(1�)(

Ps
m=t+1 �ma

�
m+�sa

�
s+
Ps
m=t+1 �m�m+�s�s��t�t)

i
=

= c1�t e(1�)(�s��t��ta
�
t )Et

h
e(1�)(

Ps
m=t+1 �ma

�
m+�sa

�
s+
Ps
m=t+1(�m+�m)"m)

i
:

One can inductively show that for any t � L, �t+�t � g0(a�t ) and, using (23) and (48), �t � 0.
Therefore, proceeding analogously as in the proof of the case t = L we can establish that

indeed (48) holds with equality. Integrating out this equality and using (17), we establish
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that for t0 � t

ln ct0(r1; :::; rt0) = B(r1; :::; rt�1) +
t0X
s=t

�srs + �t0rt0 + �t0 ;

where �t and �t are as required.

We now determine the values of the constants �t. When the PS constraint is not imposed,

we use the IEE (10). First, there exists a value e� such that e� =
e
�rf tE[ct ]

Bt
for t � T: for all

t: This yields, for all t,

�t = �+ rf t+ lnBt � lnE
h
e(

Pt
s=1 �srs+�trt)

i
;

where

lnE
h
e(

Pt
s=1 �srs+�trt)

i
= lnE

h
Et�1

h
e(

Pt
s=1 �srs+�trt)

ii
=

lnE
h
e(

Pt�1
s=1 �srs+(�t+�t)�rt�1)Et�1

�
e(�t+�t)(a

�
t��a�t�1+"t)

�i
=

tX
s=1

lnE
�
e(�s+�s)(a

�
s��a�s�1+"s)

�
;

i.e. (14) with � = �1. When the PS constraint is imposed, we use (9). There exists a value
e�� such that e�� = erf tBtE

�
c�t
�
for all t. This yields, just as above, (14) with � = 1.

Finally, constant � is chosen to let the agent be at his reservation utility.

Now suppose that the NM constraint is imposed. Proceeding inductively as above we

establish that

ln ct =
tX

s=1

�
0

srs + �
0

trt + �
0

t;

with �0t = �0t = 0 for t > L +M , �0t = �(�0t+1 + �0t+1) and �
0
t as in the Theorem, whereas �

0
t

are the lowest numbers such that the IC constraint is satis�ed, i.e.

�0t �
Bt (g

0(a�t )� �0t)PT
s=tBse(1�)(�s��t��ta

�
t )E

�
e(1�)[

Ps
m=t+1(�m+�m)"m+

Ps
m=t+1 �ma

�
m+�sa

�
s]
� ; for 0 � t � L,

(49)
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and such that the NM constraint holds:

Et

�
@U

@rt

�
= Et

�
@U

@rt+i

�
, for 0 � t � L, 0 � i �M: (50)

Now, if we let

�0L+i =
DiPT

s=L+iBse
(1�)(�0s��0L+M )

;

for some constants Di, i �M , the (50) is equivalent to

Btc
1�
t �0t + �0tc

1�
t

TX
s=t

Bse
(1�)(�s��t��ta�t )E

�
e(1�)[

Ps
m=t+1(�m+�m)"m+

Ps
m=t+1 �ma

�
m+�sa

�
s]
�
=

= Et
�
cL+i

1� �Di

�
= c1�t e(1�)(�L+i��t��ta

�
t )Et

h
e(1�)

PL+i
m=t+1(�m+�m)"m+

PL
m=t+1 �ma

�
m

i
�Di;

for 0 � t � L, i �M . This yields the desired formulas for �
0
t; t � L+M; with D = DM :

A.3 Proof of Theorem 3

We begin with the following lemma.

Lemma 1 (Concavity of Present Values) Let

I((bt)t�T ) =
TX
t=1

exp

 
ht(bt) +

tX
s=1

js(bs)

!

where all js and ht are twice di¤erentiable functions. Suppose that7:

sup

�
4minfT; e

(supht�inf ht)=2

1�minf1; �g gmaxfh
02
s ; j

02
s g+ j00s

�
< 0; (51)

sup (2h0tmaxfh0t; j0tg+ h00t ) < 0;

for � = e
sup jt
2 . Then the function I is concave.

Loosely speaking, the Lemma says that, if js and ht are su¢ ciently concave functions,

then the �PV of income function�I (bt) associated with them is also concave. This is non-

7All the suprema and in�ma are taken with respect to both the arguments and the time indices.
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trivial to prove when T is in�nite: for su¢ ciently large T , the function exp (Tj (b)) will be

convex. It is discounting (expressed by � < 1) that allows the income function to be concave.

Proof Let

Ps((bt)t�L) = e
Ps
n=1 jn(bn)+hs(bs);

Ss((bt)t�L) =
TX
n=s

e
Pn
m=1 jm(bm)+hn(bn) =

TX
n=s

Pn((bt)t�L);

for any s � T . Fix for the rest of the proof an argument sequence (bt)t�L (we will evaluate

all the functions at this sequence, and consequently economize on notation writing e.g. Sr

instead of Sr((bt)t�L) or hn instead of hn(bn)).

Step 1: Derivatives. For unit vectors er and es in the direction r and s, r � s, consider

the derivatives of the function I:

@I

@es
= j0sSs + h0sPs;

@2I

@er@es
= j0rj

0
sSr + h0rj

0
sPr + 1r=s (h

0
s(h

0
s + j0s)Ps + j00sSs + h00sPs) :

For a �xed vector y =(yt)t�T the second derivative in the direction y =(yt)t�T is:

@2I

@y@y
=

TX
s=1

ys

TX
r=1

yr
@2I

@es@er
=

=
TX
s=1

y2s (h
0
s(h

0
s + j0s)Ps + j00sSs + h00sPs) +

TX
s=1

j0sy
2
s(j

0
sSs + h0sPs) + 2

X
s;r>s

j0sysyr (j
0
rSr + h0rPr) :

Step 2: Bounding the Sr sums. For any s � T and q � T � s we have Ss+q � Ss.

Moreover,

Ss+q =
TX

t=s+q

e
Pt
n=1 jn+ht � esupht

TX
t=s+q

e
Pt
n=1 jn �

� esuphteq sup jt
T�qX
t=s

e
Pt
n=1 jn � eq sup jtSse

supht�inf ht :
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It follows that for any  2 (sup jt; 0) [ f0g we have:X
r�s

Sre
� (r�s) � C1Ss;X

s;r�s
Sry

2
re
 (r�s) =

X
r

y2rSr
X
s�r

e (r�s) � C2
X
s

Ssy
2
s ;

where

C1 = C2 = T; for  = 0; (52)

C1 =
esupht�inf ht

1� esup jt� 
; C2 =

1

1� e 
otherwise.

Step 3: Bounding the derivatives. For any  2 (sup j; 0)[f0g and any vector y =(yt)t�T ;
we have:

X
s;r�s

ysyrSr =
X
s

ys
X
r�s

p
Sryre

 
2
(r�s)

p
Sre

� 
2
(r�s) �

X
s

ys

 X
r�s

Sry
2
re
 (r�s)

!1=2 X
r�s

Sre
� (r�s)

!1=2
�

�
p
C1
X
s

ys
p
Ss

 X
r�s

Sry
2
re
 (r�s)

!1=2
�
p
C1

 X
s

y2sSs

!1=2 X
s

 X
r�s

Sry
2
re
 (r�s)

!!1=2
�

�
p
C1C2

 X
s

y2sSs

!1=2 X
s

Ssy
2
s

!1=2
=
p
C1C2

X
s

y2sSs;

where the �rst and third inequalities follow from the Cauchy-Schwartz inequality, and C1

and C2 are as in (52). Therefore:

@2I

@y@y
=

TX
s=1

y2s (h
0
s(h

0
s + j0s)Ps + j00sSs + h00sPs) +

TX
s=1

j0sy
2
s(j

0
sSs + h0sPs) + 2

X
s;r>s

j0sysyr (j
0
rSr + h0rPr) �

�
TX
s=1

y2s (2h
0
smaxfh0s; j0sgPs + j00sSs + h00sPs) + 2

X
s;r�s

ysmaxfj0s; h0sgyr2maxfh0r; j0rgSr �

�
TX
s=1

y2sPs (2h
0
smaxfh0s; j0sg+ h00s) +

TX
s=1

y2sSs

�
4
p
C1C2maxfh02s ; j02s g+ j00s

�
:

Letting  = 0 or  = sup jt
2
in case sup jt < 0 proves the Lemma.
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We now move to the proof of the Theorem itself. For this proof it is helpful to introduce

some new notation. Let at = f (xt), where

xt =

8>><>>:
e�g(at)


1� if  < 1

�g(at) if  = 1

e�g(at) if  > 1:

xt measures the agent�s leisure, and f is the �production function�given leisure, which is

decreasing and concave.

Case  = 1: Consider c�t (�) = exp
�Pt

n=1 �n(�n + f(x�n)) + �t(�t + f(x�t )) + �t
�
, the

savings-free consumption for the recommended path of actions on the path of noises � =

(�t)t�T (where x�t = �g(a�t )). For any path of noises � = (�t)t�T we introduce the �upper
linearization�utility function bU� de�ned by:

bU� �(ct)t�T ; (xt)t�L� = TX
t=1

e��t(ln c�t (�)� 1) +
TX
t=1

e��t
�

ct
c�t (�)

�
+

LX
t=1

e��txt:

By construction, bU� = U+
PT

t=1 (ct � c�t (�))
@U((c�t (�))t�T ;(x�t )t�L)

@ct
+
PL

t=1(xt�x�t )
@U((c�t (�))t�T ;(x�t )t�L)

@xt
.

Since U is concave, we have the key property:

bU� �(ct)t�T ; (xt)t�L� � U
�
(ct)t�T ; (xt)t�L

�
for all paths �; (ct)t�T ; (xt)t�L.bU� �(c�t (�))t�T ; (x�t )t�L� = U

�
(c�t (�))t�T ; (x

�
t )t�L

�
for all paths �.

Hence, to show that there are no pro�table deviations for EU , it is su¢ cient to show that

there are no pro�table deviations for E bU�. Since e(rf��)t=c�t (�) is a martingale, the agent is
indi¤erent at which time he consumes income yt, so we evaluate E bU� for ct � yt. The utility
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on any path � is then, with a slight abuse of notation8:

bU�((yt)t�T ; (xt)t�L) = TX
t=1

e��t (ln c�t (�)� 1) +
TX
t=1

e��t
�

yt
c�t (�)

�
+

LX
t=1

e��txt =

=

TX
t=1

e��t (ln c�t (�)� 1) +
TX
t=1

e
Pt
n=1 �n(f(xn)�a�n)+�t(f(xt)�a�t )��t +

LX
t=1

e��txt:

We now use Lemma 1 applied to I((xt)t�L) =
PT

t=1 e
Pt
n=1 �n(f(xn)�a�n)+�t(f(xt)�a�t )��t with

js(xs) = �s(f(xs)� a�s)� � and hs(xs) = �s(f(xs)� a�s). Since

f 0(xs) =
�1

g0(f(xs))
; f 00(xs) =

g00(f(xs))

g02(f(xs))
;

and �s � g0(a�s); condition CONV implies (51).

It follows that bU�((yt)t�T ; �) is concave, for every �. Since due to Theorem 2 bU�((yt)t�T ; �)
also satis�es the FOC at (x�t )t�L, it is maximized at (x

�
t )t�L; for every �: Therefore E bU� is

maximized by (the processes) ct � yt and xt � x�t , proving the Theorem for this case.

Case  6= 1; � = 0: As before, let c�t (�) = exp
�Pt

n=1 �n(�n + f(x�t )) + �t
�
be the savings-

free consumption for the recommended path of actions on the path of noises � = (�t)t�T

(where x�t = e�g(a
�
t ) for  > 1; and x�t = e�g(a

�
t )


1� for  < 1). The variables xt have been

de�ned in such a way that the U function is concave. The �upper linearization� utility

function bU� = U +
PT

t=1 (ct � c�t (�))
@U((c�t (�))t�T ;(x�t )t�L)

@ct
+
PL

t=1(xt � x�t )
@U((c�t (�))t�T ;(x�t )t�L)

@xt

is now:

bU� �(ct)t�T ; (xt)t�L� =
PT

t=1 e
��t(c�t (�)x

�
t )
1�
�

1
1� � 2

�
+PT

t=1 e
��tx�t

1�
�

ct
c�t (�)

�
+
PL

t=1 e
��t (c�t (�))

1�
�
xt
x�t

� :

8The abuse of notation arises since xt is not de�ned for t > L. This is irrelevant, however, as �t = �t = 0
for t > L;
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Since, as before, agent �nds it optimal to consume his own income, it is enough to show

that there are no pro�table deviations from E bU�((yt)t�T ; �):
E bU�((yt)t�T ; (xt)t�L) =
E

24 PT
t=1 e

��t(c�t (�)x
�
t )
1�
�

1
1� � 2

�
+
PL

t=1 e
��t (c�t (�))

1�
�
xt
x�t

�
+

+
PT

t=1 e
��tx�t

1�e(1�)[�t+
Pt
n=1 �n"n]+

Pt
n=1 �n(f(xn)�a�n)

35 =
E

24 PT
t=1 e

��t(c�t (�)x
�
t )
1�
�

1
1� � 2

�
+
PL

t=1 e
��t (c�t (�))

1�
�
xt
x�t

�
+

+
PT

t=1 e
(1�)

Pt
n=1(�n"n�lnE(e�nen ))e��t+(1�)[�t�g(a

�
t )+

Pt
n=1 lnE(e

�nen )]+
Pt
n=1 �n(f(xn)�a�n):

35 :
Since Mt = e(1�)

Pt
n=1(�n"n�lnE(e�nen )) is a positive martingale, we have that

E

"
TX
t=1

e��t (c�t (�))
1�
�
xt
x�t

�
+

TX
t=1

Mte
��t+(1�)[�t�g(a�t )+

Pt
n=1 lnE(e

�nen )]+
Pt
n=1 �n(f(xn)�a�n)

#
=

= EQ

"
TX
t=1

e��t (c�t (�))
1�
�

xt
Mtx

�
t

�
+

TX
t=1

e��t+(1�)[�t�g(a
�
t )+

Pt
n=1 lnE(e

�nen )]+
Pt
n=1 �n(f(xn)�a�n)

#
=

=: EQ
�
U�Q� ((xt)t�L)

�
;

where measure Q is de�ned by EQ[A] = E[MTA]=M0 for all events A, i.e. Q has Radon-

Nikodym derivative w.r.t. P equal to MT=M0. We now apply Lemma 1 to I((xt)t�L) =

e��t+(1�)[�t�g(a
�
t )+

Pt
n=1 lnE(e

�nen )]+
Pt
n=1 �n(f(xn)�a�t ) with

js(xs) = �s(f(xs)� a�s) + (1� )
�
(�s � g(a�s))� (�s�1 � g(a�s�1)) + lnE(e

�ses)
�
� �;

hs(xs) � 0:

Since

f 0(xs) = �C
1

xsg0(f(xs))
;

f 00(xs) =
1

g02(f(xs))

�
C
g0(f(xs))

x2s
� C2

g00(f(xs))

x2sg
0(f(xs))

�
;
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with C = 1 for  > 1 and C = 
1� for  < 1, and since also �s � g0(a�s), we have

4minfT; e
(supht�inf ht)=2

1� �
gmaxfh02s ; j02s g+ j00s =

4minfT; 1

1�minf�; 1gg
�2tC

2

x2tg
02(f(xt))

+
�t

g02(f(xt))

�
C
g0(f(xt))

x2t
� C2

g00(f(xt))

x2tg
0(f(xt))

�
=

�tC
2

x2tg
03(f(xt))

�
4minfT; 1

1�minf�; 1ggg
0(f(xt))�t +

g02(f(xt))

C
� g00(f(xt))

�
�

�tC
2

x2tg
03(f(xt))

�
g02(f(xt))

�
4minfT; 1

1�minf�; 1gg+
1

C

�
� g00(f(xt))

�
;

and so condition CONV implies (51).

Therefore, U�Q� (�) is concave for every �, and consequentlyE bU�((yt)t�T ; �) = EQ
�
U�Q� (�)

�
+

E
hPT

t=1 e
��t(c�t (�)x

�
t )
1�
�

1
1� � 2

�i
is concave in (the process) (xt)t�L. Since due to The-

orem 2 E bU�((yt)t�T ; �) also satis�es the FOC at (the process) (x�t )t�L, it is maximized at
(x�t )t�L. This establishes the Theorem.

A.4 Proof of Theorem 4

The arguments in the heuristic proof yield the value of Yt. We now rigorously derive the

associated consumption path. This proof is currently in progress and will be formalized and

sharpened in a future draft.

Case where there is no PS constraint

Using again the martingale representation theorem, we can write:

ln ct = �0t +

Z t

0

�st�sdzs, (53)

where (�st)s�t�T is an Ft�adapted process, and �0t is a deterministic constant. Therefore,
with U =

R
e��t ln (ct � g (a�t )), we have:

U = K +

Z T

0

e��t
�Z t

0

�st�sdzs

�
dt =

Z T

0

�Z T

s

e��t�stdt

�
�sdzs:

We thus have, a.s.:

Ys =

Z T

s

e��t�stdt: (54)
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This expression states that the sensitivity Ys of total utility to a shock dzs is the present

value of the sensitivities �st of future instantaneous utilities.

The principal wishes to minimize expected cost E
hR T
0
e�rf tctdt

i
subject to (53), (54) and

the participation constraint,
R
e��t�0tdt � u. We form the Lagrangian

L = �E
�Z T

0

e�rf te�
0
t+
R t
0 �st�sdzs

�
+ �

Z
e��t�0tdt+

Z
�s

�Z T

s

e��t�stdt� Ys

�
ds

and minimize over �0t and �st.

@L
@�t

= �E
h
e�rf te�

0
t+
R t
0 �st�sdzs

i
+ �e��t (55)

i.e., E [e�rf tct] = �e��t, the Inverse Euler equation. The optimization on �st yields9

@L
@�st

= �E
h
e�rf te�

0
t+
R t
0 �st�sdzs�st�

2
s

i
+ �se

��t; (56)

and so we have �st = �s= (��
2
s) � �s. This means that the sensitivities of future log consump-

tion to the shock dzs are identical, which is intuitive given the desirability of consumption

smoothing. Equation (54) gives Ys = �s
R T
s
e��tdt, hence �s = Ys=

�R T
s
e��tdt

�
. Plugging

this into (55), we have:

exp

�
�rf t+ �0t +

Z t

0

�2s�
2
s

2
ds

�
= �e��t:

and thus �0t = �0 + (rf � �) t�
R t
0
�2s�

2
s

2
ds for some constant �0. Since drs = �sdzs + E [drs],

we obtain, for �t = �0t �
R t
0
�sE [drs]:

ln ct = �0 + (rf � �) t�
Z t

0

�2s�
2
s

2
ds+

Z t

0

�s�sdzs = �0 + (rf � �) t�
Z t

0

�2s�
2
s

2
ds�

Z t

0

�sE [drs] +

Z t

0

�sdrt =

= �t +

Z t

0

�sdrt;

9We use the fact that for a function F ,

d

dxt
E

�
F

�Z t

0

xs�sdzs

��
= E

�
F 00
�Z t

0

xsdzs

�
xt�

2
t

�
;

which can be veri�ed via Ito�s formula.
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which gives the announced expression for ct.

Case where there is a PS constraint

By (9), erf te��t=ct is a positive martingale. Therefore, there is an adapted process �s

such that:

erf te��t=ct = exp

�
�
Z t

0

�s�sdzs �
�2s�

2
s

2
ds

�
Hence, we have, for some constant �0,

ln ct = �0 + rf t+ (rf � �) t+

Z t

0

�2s�
2
s

2
ds+

Z t

0

�s�sdzs

= �0 + rf t+ (rf � �) t+

Z t

0

�2s�
2
s

2
ds�

Z t

0

�srsds+

Z t

0

�sdrs

which is (36) with � = 1. Minimizing the cost of the contract implies that the �s are deter-

ministic. Then, for a constant K, U = K+
R T
0

�R T
s
e��tdt

�
�s�sdzs, so �s = Ys=

�R T
s
e��tdt

�
.
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A.5 Microfoundation for the NM Constraint

The analysis assumes that it is optimal for the principal to implement zero manipulation,

i.e. mt = 0. Here we o¤er potential microfoundations for this objective. Assume that the

�rm�s stock yields no dividend except in a period � > L after the CEO leaves. The dividend

is given by:

D� = exp

 
�X
s=1

�s + as

!
(1� �)

where � depends on the extent of manipulation in way we will soon specify. For simplicity,

we normalize �t such that E [e�t ] = 1. At each date t < � , investors observe the signal:

vt =
�X
s=1

�s + as:

Therefore, the rational expectation of �rm value is Pt = e�rf (��t)Et [D� ] = e�rf (��t)evtEt
�
e
P�
s=t+1 a

�
s
�
(1� �),

and the log return is rt = lnPt=Pt�1 = �t + at � a�t + r.

We now detail the impact of manipulation. We assume that if the probability that the

CEO engages in manipulation is greater than zero, then � = �� > 0, otherwise it is zero.

Therefore, we model the cost of manipulation as a �xed cost to �rm value: the expectation

of even an in�nitessimal amount of manipulation lowers �rm value by a �xed amount ��.

This technological assumption gives a tractable way to capture the fact that the possibility

of manipulation reduces �rm value (e.g. because monitoring is needed to verify accounts or

scrutinize investment projects.) Note that the assumption of this cost � allows us to dispense

with the cost � (m) featured in the main paper.

Hence, the loss from allowing manipulation is ��S, where S is the �rm value at time 0

without manipulation, while the bene�t is at most the present value V CEO of the CEO�s

salary under the scheme avoiding manipulation. Thus, if S is su¢ ciently large (if it is greater

than V CEO=��), it is e¢ cient to design the contract to deter manipulation.

If the CEO engages in manipulation at time t, then �rm value rises to S 0t+j = St+je
mt

for j = 0:::; i� 1, and S 0t+i = St+i (manipulation is reversed at t+ i). This implies that the
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returns change from Rt to R0t, with:

R0t = Rt +mt; Rt+it = Rt+it �mt; rs = Rs for s 6= t; t+ it; (57)

For example, R0t = ln (Ste
mt)� lnSt�1 = Rt +mt, and R0t+it = ln (St+it)� ln (St+it�1emt) =

Rt+it �mt. Hence, by the reasoning in the body of the paper, to ensure that the CEO does

manipulate, we require Et
h
@U
@rt

i
(mt) + Et

h
@U
@rt+i

i
(�mt) = 0, i.e. (8).

Another microfoundation is as follows. Instead of assuming a �xed cost ��, we assume

that a manipulation mt > 0 lowers lnD� by �+i m, and a manipulation mt < 0 lowers it

by���i m, where ��i are some constants. Therefore, manipulation at time t changes returns
to::

R0t = Rt +mt; Rt+it = Rt+it � (1 + "�"i )mt; rs = Rs for s 6= t; t+ it;

where " = sign (m)

The CEO will not engage in manipulation if Et
h
@U
@rt

i
(m)�Et

h
@U
@rt+i

i
(1 + "�"i )m � 0, for

small m, which leads to
�
1 + �+i

�
Et

h
@U
@rt+i

i
� Et

h
@U
@rt

i
and

�
1� ��i

�
Et

h
@U
@rt+i

i
� Et

h
@U
@rt

i
.

We obtain a series of inequalities which simplify tractably in the case where 1 + �+i = e�i

and
�
1� ��i

�
= e��i. This yields:

e��iEt

�
@U

@rt

�
� Et

�
@U

@rt+i

�
� e�iEt

�
@U

@rt

�
for 0 � i �M: (58)

They reduce to our NM formulation when �! 0. We opted for our NM formulation because

of its tractability, but the formulation (58) can still be useful in some settings.
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