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Abstract

Although the threat of rare economic disasters can have large effect on asset prices, difficulty

in inference regarding both their likelihood and severity provides the potential for disagreements

among investors. Such disagreements lead investors to insure each other against the types of

disasters each one fears the most. Due to the highly non-linear relationship between consumption

losses in a disaster and the risk premium, a small amount of risk sharing can significantly

attenuate the effect that disaster risk has on the equity premium. Our model shows that time

variation in the wealth distribution and the amount of disagreement across agents can both

lead to significant variation in disaster risk premium. It also highlights the conditions under

which disaster risk premium will be large, namely when disagreement across agents is small or

when the wealth distribution is highly concentrated in agents fearful of disasters. Finally, the

model predicts an inverse U-shaped relationship between the equity premium and the size of

the disaster insurance market.
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1 Introduction

In this paper, we demonstrate how heterogeneous beliefs about rare disasters affect asset prices and

trading activities. Research by Rietz (1988), Longstaff and Piazzesi (2004), Barro (2006) and others

show that the threat of rare economic disasters that cause severe losses in output and consumption

can have large impact on the equity premium. However, with a relatively short sample of historical

data, it is difficult to estimate the likelihood of disasters or the size of their impact, which suggests

that there is likely to be large heterogeneity in the beliefs of market participants about disasters.

We show that such disagreements can generate strong risk sharing motives among investors and

significantly affect asset prices in the equilibrium.

We study an exchange economy with two types of agents, whose beliefs on disasters can differ in

various ways. For example, one type of agents can be more optimistic about disaster risk than the

other. These optimists might believe in a lower probability of disasters (e.g., once every 1000 years

as opposed to once every 60 years), or they might think the potential loss of aggregate endowment

during a disaster is smaller. Alternatively, both types of agents could be concerned about disasters,

except that one thinks disasters are large and rare, while the other thinks they are smaller but more

frequent. We assume that markets are complete, so that the agents can trade contingent claims

and achieve optimal risk sharing.

Our main finding is that having a second type of agents with different beliefs about disasters

can cause the equity premium to drop substantially, even when the new agents only have a small

amount of wealth. This result holds whether the disagreement is about the intensity or impact

of disasters. Interestingly, this result is still true even when the new agents are generally more

pessimistic about disasters, as long as they believe the type of disasters the original agents fear the

most are relatively unlikely. When we calibrate the beliefs of one agent using international data

(from Barro (2006)) and the other using only consumption data from the US (where disasters have

been relatively mild), raising the fraction of total wealth for the second agent from 0 to 10% lowers

the equity premium from 4.4% to 2.0%. The decline in the equity premium becomes faster when

the disagreement is larger, or when the new agents also have lower risk aversion.

The key reasons behind this result are the following: (1) the equity premium derives almost

entirely from jump (disaster) risk; (2) high prices for jump risk induce aggressive risk sharing; (3)

there is a highly nonlinear relationship between risk premium and disaster risk.
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First, in our economy, as is typical in standard power utility models, there is very little com-

pensation for Brownian risk due to the low volatility of consumption and moderate levels of risk

aversion. Consequently, the equity premium derives primarily from disaster risk, and the compen-

sation for bearing disaster risk must be high. For example, if the equity premium due to disaster

risk is 4%, and there is a single type of disaster resulting in a 40% loss to the market, then the

annual premium for a disaster insurance contract that pays $1 when disaster strikes must cost 10

cents or more, regardless of the actual chance of payoff.

Second, such a high premium for disaster risk provides strong motivation for risk sharing when

agents have different beliefs about disasters. In a benchmark example of our model, the pessimists

are willing to pay up to 13 cents per $1 of disaster insurance coverage, even though the payoff

probability is only 1.7% under their own beliefs. The optimists, who believe the payoff probability

is just 0.1%, underwrite insurance contracts with notional value up to 40% of their total wealth,

despite the risk of losing 70% of their consumption if a disaster strikes.

Third, the disaster risk premium is highly non-linear in the size of disasters, which means that

a small amount of risk sharing can already significantly reduce the premium. This non-linearity is

an intrinsic property of disaster models, which generate high premium from rare events by making

marginal utility in the disaster states rise substantially with the size of the consumption losses. As

a result, the equity premium is highly sensitive to changes in the size of individual consumption

losses during a disaster. For example, if an agent (with γ = 4) manages to reduce her consumption

loss in a disaster from 40% to 35%, the equity premium she demands will fall by 40%!

Taken together, when we allocate a small amount of wealth to agents with heterogeneous

beliefs, the risk sharing they provide will be enough to significantly reduce the equity premium in

equilibrium. Importantly, the above mechanism does not require the new agents to be “globally”

more optimistic about disasters than the existing ones. The critical component in the risk sharing

mechanism is the existence of minority investors who believe that the types of disasters the majority

wealth holders fear most are relatively less likely to occur. Although these minority investors may

fear other disasters (perhaps even larger and/or more frequent ones), they will still be willing to

share the disaster risk the majority wealth holders fear. Thus, heterogeneity among agents may

result in a low equity premium even if each would individually demand a high equity premium

when other types of agents are not present.
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While the model demonstrates the sensitivity of disaster risk premium to heterogeneous beliefs,

it also highlights the conditions under which disaster risk premium will be large, namely when

disagreement across agents is small, or when the wealth distribution is highly concentrated in those

agents with similar fears of disasters. When the wealth distribution across agents with different

beliefs is not too concentrated, the disaster risk premium will remain low and smooth as the average

belief of disaster risk in the market fluctuates. However, when a disaster strikes, those optimists

will lose a large fraction of their wealth and their risk sharing capacity will be greatly reduced.

As a result, the disaster risk premium will jump up significantly, and become more sensitive to

fluctuations in disaster risk going forward. Similarly, the amount of disagreement across agents

also has important effects on disaster risk. If agents’s beliefs converge when disaster risk rises, that

could amplify the volatility of the disaster risk premium. However, if beliefs are diverging, the

disaster risk premium can actually become lower just as the average perceived disaster risk rises.

A number of other interesting results and predictions arise from our analysis. First, we combine

sampling error with simple economic restrictions to provide useful bounds on beliefs about disasters.

While sampling error puts tight restrictions on the mean of consumption growth, it leaves much

more room for disagreements about the frequency of disasters. Second, agents who are overly

optimistic about disasters are likely to survive and even gain wealth for long periods of time. This

is quite different from the case of wrong beliefs about mean growth rates, where agents with wrong

beliefs are likely to lose the majority of their wealth quickly. Third, similar to the link between

asset prices and the size of the market for riskless lending in Longstaff and Wang (2008), our model

predicts a non-monotonic relationship between the equity premium and the size of the disaster

insurance market.

The disaster risk literature starts with the seminal work of Rietz (1988). Barro (2006, 2009) has

reinvigorated this literature by providing international evidence that disasters have been frequent

and severe enough to generate a large equity premium. A series of recent studies demonstrate that

disaster risk can also help match a wide range of facts in financial markets, including asset volatil-

ity, return predictability, corporate bond spreads, option pricing, exchange rates, etc. Among these

studies are Liu, Pan, and Wang (2005), Gabaix (2009), Wachter (2009), Farhi and Gabaix (2009),

Martin (2008), and others. The majority of these studies adopt a representative-agent framework.

The two papers closest to ours are Bates (2008) and Dieckmann (2009). Bates (2008) studies in-

vestors with heterogenous attitudes towards crash risk, which is isomorphic to heterogeneous beliefs
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of disaster risk. He focuses on small but frequent crashes and does no model intermediate consump-

tion. Dieckmann considers only log utility. In these settings, risk sharing has limited effects on the

equity premium. We also contribute theoretically by allowing for general disagreements about the

intensity and disaster size, time-varying disagreement, and time-varying disaster intensities.

Our paper builds on the literature of heterogeneous beliefs models. See Basak (2005) for a

survey. Recent developments on heterogeneous beliefs and asset pricing include Kogan, Ross,

Wang, and Westerfield (2006), Buraschi and Jiltsov (2006), Yan (2008), David (2008), Dumas,

Kurshev, and Uppal (2009), Xiong and Yan (2009), among others. Our main finding is related to

the results of Kogan, Ross, Wang, and Westerfield (2006), who show that irrational traders can

still have large price impact when their wealth becomes negligible. Our affine heterogeneous beliefs

model provides a tractable yet flexible framework, through the generalized transform results of

Chen and Joslin (2009), to study the implications of general forms of heterogeneity in beliefs about

disasters. In the special case with constant disaster probability, we derive closed form solutions for

prices, risk premia, and portfolio positions for the cases where relative risk aversion γ > 1. We also

provide explicit parameter restrictions for asset prices to be finite.

We also compare our results to models of heterogeneous preferences. Among the works on this

topic are Dumas (1989), Wang (1996), Chan and Kogan (2002), and more recently Longstaff and

Wang (2008). When agents’ risk aversions are different, we show that the effects on the equity

premium are qualitatively similar to the case with heterogeneous beliefs. Moreover, combining

lower risk aversion with optimistic beliefs can make the effects of risk sharing on the equity premium

particularly strong.

The rest of the paper is organized as follows. Section 2 presents our model of heterogeneous

agents and disasters. Section 3 discusses how to bound the beliefs about disasters. Section 4

analyzes the effect of heterogeneous beliefs and risk sharing in a setting with constant disaster risk.

The results are then extended to the setting with time-varying disaster risk in Section 5. Section

6 studies the effects of time-varying disagreement. Section 7 concludes.
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2 Model Setup

We consider a continuous-time, pure exchange economy. There are two agents (A, B), each being

the representative of her own class. Agent A believes that the aggregate endowment is Ct = ecc
t+cd

t ,

where cc
t is the diffusion component of log aggregate endowment, which follows

dcc
t = ḡdt + σcdW c

t , (1)

where ḡ and σc are the expected growth rate and volatility of consumption without jumps, and W c
t

is a standard Brownian motion under agent A’s beliefs. The term cd
t is a pure jump process whose

jumps arrive with stochastic intensity λt,

dλt = κ(λ̄A − λt)dt + σλ

√

λtdW λ
t , (2)

where λ̄A is the long-run average jump intensity under A’s beliefs, and W λ
t is a standard Brownian

motion independent of W c
t . The jumps ∆cd

t have time-invariant distribution νA. We summarize

agent A’s beliefs with the probability measure PA.

Agent B believes that the probability measure is PB, which we shall suppose is equivalent to PA.

She may disagree about the growth rate of consumption without jumps, the likelihood of disasters

or the distribution of the severity of disasters when they occur. We assume that the two agents are

aware of each others’ beliefs, but nonetheless “agree to disagree”.1

Specifically, agent B’s beliefs are characterized by the Radon-Nikodym derivative ηt ≡ (dPB/dPA)t,

which satisfies

ηt = eat+bcc
t−It , (3)

It =

∫ t

0

(

bḡ +
1

2
b2σ2

c + λs

(

λ̄B

λ̄A
− 1)

))

ds , (4)

for some constants b and λ̄B > 0, and at is a pure jump process whose jumps are coincident with

1We do not explicitly model learning about disasters. Given the nature of disasters, Bayesian updating of beliefs
about disaster risk using realized consumption growth will likely be very slow, and the disagreements in the priors
will persist for a long time.
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the jumps in cd
t and have size

∆at = log

(

λ̄B

λ̄A

dνB

dνA

)

. (5)

Here, dνB

dνA is a function of the disaster size, and reflects the disagreement about the distribution

of disaster size (conditional on a disaster); dνB

dνA will be large (small) for the type of disasters that

agent B thinks are relatively more (less) likely than agent A.

Intuitively, the Radon-Nikodym derivative expresses the differences in beliefs between the agents

by letting agent B assign a higher probability to those states where ηt is high. The terms at and

bcc
t reflect B’s potential disagreements regarding the likelihood of disasters and the growth rate of

consumption, respectively. For example, if b > 0, then ηt is large in those states where cc
t is high,

which is equivalent to agent B believing in a higher expected growth rate of consumption without

jumps. Similarly, if B believes a disaster of a certain size d is more likely than A does, either due to

a higher intensity in general or a higher probability for disasters of size d conditional on a disaster

occurring, then ηt jumps up when such a disaster occurs. Finally, the integral term It ensures that

ηt is a martingale under measure PA.

It follows from the specification of ηt in (3-5) that, under agent B’s beliefs, the expected growth

rate of consumption without jumps is ḡ+bσ2
c , a disaster occurs with intensity λt×

λ̄B

λ̄A (the long run

average intensity is λ̄B), and the disaster size distribution is νB (which is equivalent to νA). Now

we see that the jumps in ηt specified in (5) are determined by the log likelihood ratio for disasters

of different sizes under the two agents’ beliefs. Within this setup, agent B not only can disagree

with A on the average frequency of disasters, but also the likelihoods for disasters of different

magnitude. Moreover, this setup also has the advantage of remaining within the affine family as

Xt = (cc
t , c

d
t , log ηt, λt) follow a jointly affine process, so that the equilibrium can be computed using

the generalized transform method in Chen and Joslin (2009).

We assume that the agents are infinitely lived and have constant relative-risk aversion (CRRA)

utility over life time consumption:

U i(Ci) = EPi

0

[
∫ ∞

0
e−ρit

(Ci
t)

1−γi

1 − γi
dt

]

, i = A,B. (6)

We also assume that markets are complete and agents are endowed with some fixed share of

6



aggregate consumption (θA, θB = 1 − θA).

The equilibrium allocations can be characterized as the solution of the following planner’s

problem, specified under the probability measure PA,

max
CA

t , CB
t

EPA

0

[∫ ∞

0
e−ρAt (C

A
t )1−γA

1 − γA
+ ζ̃te

−ρBt (C
B
t )1−γB

1 − γB
dt

]

, (7)

s.t. CA
t + CB

t = Ct, (8)

where ζ̃t ≡ ζηt is the belief-adjusted Pareto weight for agent B. The first order conditions imply

e−ρAt(CA
t )−γA = ζ̃te

−ρBt(CB
t )−γB , (9)

which together with the market clearing condition (8) gives the equilibrium consumption allocations:

CA
t = fA(ζ̂t)Ct , (10a)

CB
t = (1 − fA(ζ̂t))Ct , (10b)

where ζ̂t = e(ρA−ρB)tCγA−γB

t ζ̃t, and fA, the fraction of aggregate endowment allocated to agent A,

is an implicit function.

The stochastic discount factor under A’s beliefs, MA
t , is given by

MA
t = e−ρAt(CA

t )−γA = e−ρAtfA(ζ̂t)
−γAC−γA

t . (11)

Finally, we can solve for ζ through the life-time budget constraint for one of the agents (see Cox

and Huang (1989)), which is linked to the initial allocation of endowment.

Since our emphasis is on heterogeneous beliefs about disasters, for the remainder of this section

we focus on the case where there is no disagreement about the distribution of Brownian shocks,

and the two agents have the same preferences.2 In this case, b = 0, γA = γB = γ, ρA = ρB = ρ.

The equilibrium consumption share then simplifies to

fA(ζ̃t) =
1

1 + ζ̃
1
γ

t

. (12)

2In Appendix D, we investigate the case with heterogeneous preferences.
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From the definition of ∆at, we see that as a disaster of size d occurs, ζ̃t is multiplied by the likelihood

ratio λ̄A

λ̄B
dνB

dνA (d). Thus, if agent B is more pessimistic about a particular type of disaster (because

λ̄B > λ̄A and/or dνB

dνA (d) > 1), she will have a higher weight in the planner’s problem when such a

disaster occurs, so that her (relative) consumption increases.

The equilibrium allocations can be implemented through competitive trading in a sequential-

trade economy. We consider three types of traded securities: (i) a risk-free money market account,

(ii) a claim to aggregate consumption, and (iii) a series (or continuum) of disaster insurance con-

tracts with 1 year maturity, which pay $1 on the maturity date if a disaster of size d occurs within

a year.

The instantaneous riskfree rate can be derived from the stochastic discount factor MA
t ,

rt = −
DMA

t

MA
t

= ρ + γḡ −
1

2
γ2σ2

c − λt



EPA
t



e−γ∆cd
t

fA
(

ζ̃te
∆at

)

fA(ζ̃t)



− 1



 . (13)

The price of the aggregate endowment claim is

Pt =

∫ ∞

0
EPA

t

[

MA
t+τ

MA
t

Ct+τ

]

dτ = Cth(λt, ζ̃t) , (14)

where the price/consumption ratio only depends on the disaster intensity λt and the stochastic

weight ζ̃t. In the case where λt is constant, the price of the consumption claim further reduces to

closed form solutions. Similarly, we can also compute the individual agents’ wealth as the prices of

their equilibrium consumption streams. See Appendix A for details.

In order for prices of the aggregate endowment claim to be finite in the heterogeneous-agent

economy, it is necessary and sufficient that prices are finite under each agent’s beliefs in a single-

agent economy (see Appendix B for a proof). As we show in the appendix, finite prices require

that the following two inequalities hold:

0 < κ2 − 2σ2
λ(φi(1 − γ) − 1), (15a)

0 > κλ̄i
κ −

√

κ2 + 2σ2
λ(1 − φi(1 − γ))

σ2
λ

− ρ + (1 − γ)ḡ +
1

2
(1 − γ)2σ2

c , (15b)

where φi is the moment generating function for the distribution of jumps in endowment νi under
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measure Pi. The first inequality reflects the fact that the volatility of the disaster intensity cannot

be too large relative to the rate of mean reversion. It prevents the convexity effect induced by

the potentially large intensity from dominating the discounting. The second inequality reflects the

need for enough discounting to counteract the growth.

Next, we can compute the price of a disaster insurance for disasters of size d (causing a jump in

log consumption of ∆cd
t = d) by considering the counting processes, Nd

t , which counts the number

of disasters of size d that have occurred up to time t:

PDI
t (d) = EPA

t

[

MA
t+1

MA
t

1{Nd
t+1>Nd

t }

]

. (16)

In the case where λt is constant, this reduces to a simple expression. For the general case, we

can compute the expression using the transform analysis of Duffie, Pan, and Singleton (2000). See

Appendix A for details.

Additionally, the stochastic discount factor allows us to compute the risk neutral dynamics,

which facilitates the computation and interpretation of excess returns. Under the risk-neutral

measure, the log aggregate endowment follows

dct = (ḡ − γσ2
c )dt + σcdW Q

t + dJQ
t ,

where the risk-neutral disaster intensity λQ
t ≡ EPi

t−[M i
t/M

i
t−]λi

t is determined by the expected jump

size of the stochastic discount factor at the time of a disaster. The ratio λQ
t /λi

t is often referred to

as the jump-risk premium. When the riskfree rate and disaster intensity are close to zero, the risk-

neutral disaster intensity λQ
t is approximately the value of a one-year disaster insurance contract

that pays $1 at t + 1 when a disaster occurs between t and t + 1.3 The risk-neutral distribution of

the disaster size also changes to dνQ =
M i

t/M i
t−

E
Pi
t−[M i

t/M i
t−]

dνi.

The risk adjustments for the jumps are quite intuitive. If the stochastic discount factor for

agent i jumps up during a disaster, then λQ
t > λi

t, i.e. disasters occur more frequently under the

risk-neutral measure. Moreover, the risk-adjusted distribution of jump size conditional on a disaster

slants the probabilities towards the types of disasters that lead to a bigger jump in the stochastic

discount factor, which generally makes severe disasters more likely under Q.

3The value of the disaster insurance is D1
t = e−r

[

∫ t+1

t
λQe−λQ(s−t)ds

]

. When r and λQ are close to 0, D1
t ≈ λQ.
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Finally, the risk premium for any security under agent i’s beliefs is the difference between the

expected return under Pi and under the risk-neutral measure Q. In the case of the aggregate

endowment claim, the conditional equity premium under agent i’s beliefs is

EPi
t [Re] = γσ2

c + λi
tE

Pi
t [∆R] − λQ

t EQ
t [∆R], (17)

where ∆R is the return of the endowment claim in a disaster, λA
t = λt, and λB

t = λt ×
λ̄B

λ̄A . The

difference between the last two terms in (17) is the premium for bearing disaster risk. This premium

is large if the jump-risk premium is large, and/or the expected loss in return in a disaster is large

(especially under the risk-neutral measure).

It immediately follows that the difference in equity premium under the two agents’ beliefs is

EPA
t [Re] − EPB

t [Re] = λA
t EPA

t [∆R] − λB
t EPB

t [∆R] .

This difference will be small relative to the size of the equity premium when the disaster intensity

and expected loss under the risk-neutral measure are large relative to their values under actual

beliefs. In the remainder of the paper, we report the equity premium relative to agent A’s beliefs,

PA. One interpretation for picking PA as the reference measure is that A has the correct beliefs,

and we are studying the impact of the incorrect beliefs of an optimist on asset prices.

3 Admissible Beliefs about Disasters

While the beliefs of individual agents about consumption growth and disasters are not directly

observable, historical consumption data together with simple economic restrictions can provide

guidance on how extreme these beliefs could be. We define an admissible belief as one that satisfies

the following conditions: (i) the belief cannot be rejected by the data at a given significance level

α (we choose α = 5%), and (ii) the price of consumption claim under the belief is finite. In the

quantitative analysis that follows, we will only consider beliefs that are admissible.

We first use sampling error as a way to judge what types of beliefs are plausible. Specifically,

in the case where the disaster intensity is constant, we consider whether an agent would be able to

reject her belief about the likelihood of disasters using 100 years of historical data. To highlight
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Figure 1: Bounds for extreme beliefs. The graph plots the p-value for various beliefs about the
mean growth rate of consumption (Panel A) and disaster intensity (Panel B) based on 100 years
of data. In Panel A, µ̄ is the sample average growth rate, while µ̂ is the agent’s belief. In Panel B,
λ̂ is the agent’s perceived disaster intensity.

the difficulty in estimating the likelihood of disasters, we also report the results from testing beliefs

about the mean growth rate of consumption for comparison. The results are reported in Figure 1.

In the case of mean growth rate, the p-value is the probability that the true growth rate is

x% below the observed sample mean. It is computed based on the assumption that there are no

disasters and that the volatility of consumption growth is σc = 2%. The p-value falls rapidly as the

deviation from the sample mean rises, reaching 1% when the true growth rate is just 0.5% below

the sample mean. Thus, sampling error alone leaves very little room for disagreement about the

mean growth rate, which is unlikely to have significant impact on asset prices.4

In contrast, since the sampling error for disaster intensity is significantly larger, there is more

room for disagreement about the likelihood of disasters. The p-value in this case is the probability

that no disasters occur over 100 years (the disasters we consider in the paper are significantly

more severe than those observed in the last 100 years of US history) assuming the true intensity

is consistent with the agent’s beliefs. Panel B of Figure 1 shows that λ = 3% corresponds to a

p-value of 5%. In a homogeneous-agent model with relative risk aversion γ = 4 and assuming a

40% disaster size, the equity premium will rise from essentially 0 to 8% when the disaster intensity

4Cecchetti, Lam, and Mark (2000) and Abel (2002) discuss other sources of disagreement beyond sampling error,
which could allow for more disagreements and larger effect on asset pricing.
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rises from 0 to 3%, which demonstrates how powerful the different beliefs about λ can be for asset

pricing. If we were to assume there was one disaster in the last 100 years (the Great Depression),

then even higher values of λ will become admissible.

While estimating the disaster intensity is hard, estimating the distribution of disaster size

is even harder, which again suggests that there are likely to be heterogeneous beliefs about the

distribution of disaster sizes. Despite the lack of information from consumption data, we can still

obtain some restrictions on the beliefs of disaster size (and disaster intensity) via the requirement

that prices of the aggregate consumption claim are finite. These conditions are given by (15a–15b)

for the general case. If λt is constant, the conditions simplify to

ρ − (1 − γ)ḡ −
1

2
(1 − γ)2σ2

c − λ(φ(1 − γ) − 1) > 0,

which provides a bound on the moment generating function of the disaster size distribution for

given preference parameters and disaster intensity.

Having established the relevance of heterogeneous beliefs about disasters via statistical evidence

and economic restrictions, we now investigate how such heterogeneous beliefs affect asset pricing.

4 Heterogeneous Beliefs: Constant Disaster Risk

In this section, we focus on a special case of the model where the risk of rare disasters is constant,

i.e., λt = λ̄. To highlight the basic mechanism, we study several forms of disagreements, starting

with two simplest cases, one where agents only disagree about the frequency of disasters, the other

where they only disagree about the size of disasters. We then examine the case when both agents

are concerned with disaster risks, but disagree on the exact frequency/magnitude of disasters.

Finally, we calibrate our model by extracting two sets of beliefs about disaster risk from the US

and international experiences of economic disasters.

4.1 Disagreement about the Frequency of Disasters

In the first example, we assume that the disaster size is deterministic, ∆cd
t = d̄, and the two agents

only disagree about the frequency of disasters (λ). We set d̄ = −0.51 so that the MGF φ(−γ) in this
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Figure 2: Disagreement about the frequency of disasters. Panel A plots the equity premium
under the pessimist’s beliefs as a function of the wealth share of the optimist. Panel B plots the
jump-risk premium λQ

t /λA for the pessimist. We consider two sets of beliefs for the pessimist:
λA = 1.7% and λA = 2.5%.

model matches the calibration of Barro (2006) for γ = 4. It implies that aggregate consumption falls

by 40% when a disaster occurs.5 Agent A (pessimist) believes that disasters occur with intensity

λA = 1.7% (once every 60 years), which is also taken from Barro (2006). The remaining parameters

are ḡ = 2.5%, σc = 2%, and ρ = 3%. Agent B (optimist) believes that disasters are much less

likely, λB = 0.1% (once every 1000 years), but she agrees with A on the size of disasters as well as

the Brownian risk in consumption. She also has the same preferences as agent A.

Figure 2 shows the conditional equity premium and the jump-risk premium under the pessimist’s

beliefs. If all the wealth is owned by the pessimist, the equity premium is 4.7%, and the riskfree

rate is 1.3%. Since the optimist assigns very low probabilities to disasters, if she has all the wealth,

the equity premium is only 0.43% under her own beliefs, or −0.21% under the pessimist’s beliefs.

Thus, it is not surprising to see the premium fall when the optimist owns more wealth. However,

the speed at which the premium declines in Panel A is impressive. When the optimistic agent owns

10% of the total wealth, the equity premium has fallen from 4.7% to 2.7%. When the wealth of

the optimist reaches 20%, the equity premium falls to just 1.7%.

5This value is higher than the average disaster size in Barro (2006) due to the fact that larger but more rare jumps
can have big impact (especially with large γ) due to the exponential nature of the MGF.
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We can derive the conditional equity premium as a special case of (18), where the assumption

of constant disaster size helps simplify the expression:

EPA
t [Re] = γσ2

c + λA

(

λQ
t

λA
− 1

)(

h(ζ̃te
ad̄)ed̄

h(ζ̃t)
− 1

)

, (18)

where h is the price-consumption ratio from (14), with λt being constant. The first term γσ2
c is

the standard compensation for bearing Brownian risk. Heterogeneity has no effect on this term

since the agents agree about the brownian risk. Given the value of risk aversion and consumption

volatility, this term has negligible effect on the premium. The second term reflects the compensation

for disaster risk. It can be further decomposed into three factors: (i) the constant disaster intensity

λA, (ii) the jump-risk premium λQ
t /λA, and (iii) the return of the consumption claim in a disaster.

How does the wealth distribution affect the jump-risk premium? From the definition of the

stochastic discount factor Mt and the risk-neutral intensity λQ
t , it is easy to show

λQ
t /λA = e−γ∆cA

t ,

where ∆cA
t is the jump size of the equilibrium log consumption for agent A in a disaster, which could

be very different from the jump size in aggregate endowment due to trading. Without trading, as

is the case when agent A has all the wealth, ∆cA
t = d̄, which generates a jump-risk premium of

λQ
t /λA = 7.7. We have shown earlier that λQ

t is approximately the premium of a one-year disaster

insurance. Thus, without any risk sharing, the pessimist will be willing to pay an annual premium

of 13 cents for $1 of protection against a disaster event that occurs with probability 1.7%.

Since the optimist views disasters as very unlikely events, she is willing to trade away their

claims in the future disaster states in exchange for higher consumption in normal times. For

example, she will find selling an $1 disaster insurance and collecting a 13 cents premium a lucrative

trade. Such a trade helps reduce the pessimist’s consumption loss in a disaster ∆cA
t , which in turn

lowers the jump-risk premium. However, the optimist’s capacity for underwriting such insurance is

limited by her wealth, as she needs to ensure that her consumption/wealth is positive in all future

states, including when a disaster occurs (no matter how unlikely such an event is). In fact, she

stays away from this limit imposed by the wealth constraint because the more disaster insurance

she sells, the more her consumption falls in the disaster states, which makes her less willing to take
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on additional disaster risk. The more wealth the optimist has, the more disaster insurance she is

able to sell without making her consumption too risky when a disaster strikes.

The above mechanism can substantially reduce the disaster risk exposure of the pessimist in

equilibrium. Panel B of Figure 2 shows that the jump-risk premium falls rapidly. When the optimist

owns 20% of total wealth, the jump-risk premium drops to 4.2. According to equation (18), such

a drop in the jump-risk premium alone will cause the equity premium to fall by more than half to

2.2%, which accounts for the majority of the change in the premium (from 4.7% to 1.7%).

Besides the jump-risk premium, the equity premium also depends on the return of the con-

sumption claim in a disaster, which in turn is determined by the consumption loss and changes in

the price-consumption ratio. Following a disaster, the riskfree rate drops as the wealth share of the

pessimist rises. With CRRA utility, the lower interest rate effect can dominate that of the rise in

the risk premium, leading to a higher price-consumption ratio.6 Since a higher price-consumption

ratio partially offsets the drop in aggregate consumption, it makes the return less sensitive to dis-

asters, which will contribute to the drop in equity premium. However, our decomposition above

shows that the reduction of the jump-risk premium (due to reduced disaster risk exposure) is the

main reason behind the fall in premium.

Can we “counteract” the effect of the optimistic agent and restore the high equity premium by

making the pessimist even more pessimistic about disasters? The dash-lines in Figure 2 plot the

results when agent A believes that λ = 2.5% (everything else equal), which according to Figure 1 is

still admissible (with p-value of 8%). The results are striking. While the equity premium becomes

significantly higher (6.8%) when the pessimist owns all the wealth in the economy, it falls to 4.1%

with just 2% of total wealth allocated to the optimist (already lower than the previous case with

λA = 1.7%), and is below 1% when the wealth of the optimist exceeds 8.5%. As the wealth share

of the optimist grows higher, the premium can even become negative. The decline in the jump-risk

premium is still the main reason behind the lower equity premium. For example, when the optimist

has 10% of total wealth, the jump-risk premium falls to 4.0, which will drive the premium down

to 3.1% (60% of the total fall). The reason that the equity premium and the jump-risk premium

decline faster is that the amount of risk sharing becomes larger as the beliefs of the two agents

become more different, which can quickly dominate the heightened fear of the pessimist.

6Wachter (2009) also finds a positive relation between the price-consumption ratio and the equity premium in a
representative agent rare disaster model with time-varying disaster probabilities and CRRA utility.
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Figure 3: Risk sharing. Panel A and B plot the total notional value of disaster insurance relative
to the wealth of the optimist and total wealth in the economy. Panel C plots the consumption
share for the optimist in equilibrium. Panel D compares the two agents’ consumption drops in a
disaster with that of the aggregate endowment. These results are for the case λA = 1.7%.

To better examine the risk sharing mechanism between agents, we compute their portfolio

positions in the aggregate consumption claim, disaster insurance, and the money market account.

Calculating these portfolio positions amounts to finding a replicating portfolio that matches the

exposure to Brownian shocks and jumps in the individual agents’ wealth processes. Appendix A

provides the details. The first thing to notice is that each agent will hold a constant proportion of

the consumption claim. Intuitively, this is because they agree on the brownian risk and share it

proportionally. Disagreement over disaster risk is resolved through trading in the disaster insurance

market, which is financed by the money market account.

We plot the notional value of the disaster insurance sold by the optimist as a fraction of her

total wealth in Panel A of Figure 3. The dash-line is the maximum amount of disaster insurance (as
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a fraction of her wealth) the optimist can sell subject to her budget constraint. When the optimist

has very little wealth, the notional value of the disaster insurance she sells is about 35% of her

wealth. This value initially rises and then falls as the optimist gains more wealth. The reason is

that when the optimist has little wealth, the pessimist has great demand for disaster insurance and

is willing to pay a high premium, which induces the optimist to sell more insurance relative to her

wealth. As the optimist gets more wealth, risk sharing improves, and the premium on the disaster

insurance falls, so that the optimist becomes less aggressive in underwriting the insurance.

By comparing the actual amount of trading to its limit, we can judge whether the risk sharing in

equilibrium is too “extreme”. At its peak, the amount of disaster insurance sold by the optimist is

about half of the maximum amount that she can underwrite while still keeping her wealth positive

with probability 1, which might appear reasonable. The caveat is that, in reality, underwriters of

disaster insurance will likely be required to collateralize their promises to pay in the disaster states.

According to the model, all the wealth is from the claim on future endowment income, which may

not be used as collateral (just as labor income cannot be used as collateral). We will revisit the

issue of market incompleteness later.

Panel B plots the size of the disaster insurance market (the total notional value normalized by

total wealth). Naturally, the size of this market is zero when either agent has all the wealth, and

the market is the biggest when wealth is closer to be evenly distributed. At its peak, the notional

value of the disaster insurance market is about 16% of the total wealth of the economy. Notice that

the model generates a non-monotonic relation between the size of the disaster insurance market and

the equity premium. The premium is high when there is a lot of demand for disaster insurance but

little supply, and is low when the opposite is true. In either case, the size of the disaster insurance

market will be small.

Panel C plots the equilibrium consumption share of the optimist for different wealth distribu-

tions. The 45-degree line corresponds to the case of no trading. The optimist’s consumption share

is above the 45-degree line, especially when her wealth is small, suggesting that she is consuming

a larger share of total consumption than her endowment in the non-disaster states. However, the

price for getting more to consume in normal times is more exposure to the fall in consumption when

disaster strikes, which is evident in Panel D. A sign of how aggressive the optimist is in betting

against disaster risk is that, when she has little wealth, she will suffer a 70% loss in consumption
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in the event of a disaster (compared to 40% drop in aggregate consumption). As for the pessimist,

the less wealth she possesses, the more disaster insurance she buys relative to her wealth. This

will gradually lower her disaster risk exposure, and can eventually turn the disaster insurance into

a speculative position — her consumption can jump up as high as 20% in a disaster. This “over-

insurance” explains why the equity premium under the pessimist’s beliefs can turn negative when

the optimist has most of the wealth.

If we make agent A’s beliefs more pessimistic (e.g. λA = 2.5%), she will pay more for disaster

insurance, which presents a better trading opportunity for agent B. Naturally, the amount of

disaster insurance sold (both relative to the wealth of the optimistic agent and to total wealth in

the economy) becomes higher than the case of milder pessimism, and the equilibrium consumption

shares will become more nonlinear. As a result, the pessimist’s consumption loss in a disaster will

be reduced at a faster rate (especially near the left boundary), which accelerates the fall in the

equity premium.

A final question for this example is whether the effect of risk sharing on the equity premium

becomes stronger or weaker as the size of disaster increases. On the one hand, for larger disasters,

the equity premium becomes more sensitive to changes in the size of consumption drops, which

means the premium will decline more for the same amount of risk sharing between the agents. On

the other hand, the optimist will be increasingly reluctant to take on extra losses in the disaster

state because her marginal utility rises exponentially in the (log) size of consumption losses. To

study the net effects, we increase the size of disasters, but keep the risk premium for the pessimist

in the single-agent and the relative difference in beliefs unchanged (by lowering λA and keeping

λB/λA fixed). Our results (not reported) show that the second effect dominates. The decline in

equity premium becomes closer to linear as d̄ gets larger (in absolute value), and the amount of

risk sharing becomes smaller.

4.2 Disagreement about the Size of Disasters

The second example we study is on disagreement about the distribution of disaster size. For

simplicity, we assume that the drop in aggregate consumption in a disaster follows a binomial

distribution, with the possible drops being 10% and 40%. Both agents agree on the intensity of a

disaster (λ = 1.7%). Agent A (pessimist) assigns a 99% probability to a 40% drop in aggregate
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Figure 4: Disagreement about the size of disasters. The left panel plots the equity premium
under the pessimist’s beliefs. The right panel plots the jump-risk premium for the pessimist. In the
case with “more disagreement”, the pessimist (optimist) assigns 99% probability to the big (small)
disaster, conditional on a disaster occurring. With “less disagreement”, the probability assigned to
big (small) disaster drops to 90%.

consumption, thus having essentially the same beliefs as in the previous example. On the contrary,

agent B (optimist) only assigns 1% probability to a 40% drop, but 99% probability to a 10% drop.

The rest of the parameter values are the same as in the first example.

Figure 4 (solid lines) plots the conditional equity premium and jump-risk premium under the

pessimist’s beliefs. When the pessimist has all the wealth, the equity premium is 4.6% (almost the

same as in the first example). Again, the equity premium falls rapidly as we starts to shift wealth

to the optimist. The premium falls by almost half to 2.4% when the optimist owns just 5% of total

wealth, and becomes 1.4% when the optimist’s share of total wealth grows to 10%. Similarly, the

jump-risk premium falls from 7.6 to 4.5 with the optimist’s wealth share reaching 10%, which by

itself will lower the premium to 2.4%.

These results show that, in terms of asset pricing, introducing an agent who disagrees about

the severity of disasters is similar to having one who disagrees about the frequency of disasters.

Even though the two agents agree on the intensity of disasters in general, they actually strongly

disagree about the intensity of disasters of a specific magnitude. For example, under A’s beliefs,

the intensity of a big disaster is 1.7% × 99% = 1.68%, which is 99 times the intensity of such
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a disaster under B’s beliefs. The opposite is true for small disasters. Thus, B will aggressively

insure A against big disasters, while A insures B against small disasters. For agent A, the effect

of the reduction in consumption loss in a big disaster dominates that of the increased loss in a

small disaster, which drives down the equity premium exponentially. Such trading can also become

speculative when B has most of the wealth: agent A will take on so much loss in a small disaster

that the jump-risk premium rises up again.

Naturally, we expect that the agents will be less aggressive in trading disaster insurances when

there is less disagreement on the size of disasters, and that the effect of risk sharing on the risk

premium will become smaller. The case of “less disagreement” in Figure 4 confirms this intuition.

In this case, we assume that the two agents assign 90% probability (as opposed to 99%) to one of

the two disaster sizes. While the equity premium still falls rapidly near the left boundary, the pace

is slower than in the previous case. Similarly, we see a slower decline in the jump-risk premium.

4.3 When Two Pessimists Meet

The examples we have considered so far have one common feature: the new agent we are bringing

into the economy has more optimistic beliefs about disaster risk, in the sense that the distribution

of consumption growth under her beliefs first-order stochastically dominates that of the other’s,

and that the equity premium is significantly lower when she owns all the wealth. However, the key

to generating aggressive risk sharing is not that the new agent demands a lower equity premium,

but that she is willing to insure the majority wealth holders against the types of disasters that they

fear most.

In order to highlight this insight, let’s consider the following example, where both agents believe

that disaster risk accounts for the majority of the equity premium. The key difference in their beliefs

is that one agent believes that disasters are rare but big, while the other thinks disasters are more

frequent but less severe. Specifically, we assume that disasters can cause aggregate consumption

drops of a 30% or 40%. Agent A believes that λA = 1.7%, and assigns 99% probability to the

bigger disaster. B believes that λB = 4.2%, and assigns 99% probability to the smaller disaster.

By themselves, the two agents both demand high equity premium. We have chosen λB so

that, under the beliefs of agent A, the equity premium is 4.6% whether A or B has all the wealth.

However, they have significant disagreement on the exact magnitude of the disaster. For example,
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Figure 5: When Two Pessimists Meet. Panel A and B plot the equity premium and jump-risk
premium under agent A’s beliefs. Panel C and D plot the individual consumption changes in small
and big disasters.

agent A believes that the intensity of the big disaster is 1.68%, while B believes that the intensity

is only 0.04%. Such disagreement generates a lot of demand for risk sharing. As we see in Panel A

of Figure 5, the conditional equity premium falls rapidly as the wealth share of agent B moves away

from the two boundaries. In fact, the premium will be below 2% when B owns between 9% and

99% of total wealth. In Panel B, the jump risk premium also falls by half from 7.6 and 10 on the

two boundaries when B’s wealth share moves from 0% to 25% and from 100% to 91%, respectively.

To get more information on the risk sharing mechanism, in Panel C and D we examine the

equilibrium consumption changes for the individual agents during a small or big disaster. Since

agent A assigns a low probability to the small disaster, she insures agent B against this type

of disasters. As a result, her consumption loss in such a disaster exceeds that of the aggregate

endowment (-30%), and it increases with the wealth share of agent B. When B has almost all
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the wealth in the economy, agent A sells so much small disaster insurance to B that her own

consumption can fall by as much as 82% when such a disaster occurs. As a result, agent B is able

to reduce her risk exposure to small disasters significantly. In fact, her consumption actually jumps

up in a small disaster when she owns less than 75% of total wealth, sometimes by over 100% (when

her wealth share is small).

The opposite is true in Panel D. As agent B insures A against big disasters, she experiences

bigger consumption losses in such a disaster than the aggregate endowment (-40%). The equilibrium

consumption changes of the two agents are less extreme compared to the case of small disasters,

which is due to two reasons. First, the relative disagreement on big disasters is smaller than on

small disasters. Second, the insurance against larger disasters is more expensive, so that agent A’s

ability to purchase disaster insurance is more constrained by her wealth.

We can take the insight from this example one step further. Suppose the new agent added

into the economy is even more pessimistic about disaster risk than the majority wealth holder.

The new agent assigns higher probabilities to more severe disasters, so that she would demand a

higher equity premium on her own. However, the equity premium will still decline rapidly when

we allocate a small amount of wealth to the new agent, because despite her pessimism, she will be

able to insure the old agent against the smaller disasters.

4.4 Calibrating Disagreement: Is the US Special?

Having considered a series of special examples of heterogeneous beliefs, we now extend the analysis

to a less stylized model of beliefs on disasters. The way we calibrate the beliefs of the two types

of agents is as follows. Agent A believes that the US is no different from the rest of the world in

its disaster risk exposure. Hence her beliefs are calibrated using cross-country consumption data.

Agent B, on the other hand, believes that the US is special. She forms her beliefs on disaster risk

using only the US consumption data.

An important contribution of Barro (2006) is to provide detailed accounts of the major con-

sumption declines cross 35 countries in the twentieth century. Rather than directly using the

empirical distribution from Barro (2006), we estimate a truncated Gamma distribution for the log

jump size from Barro’s data using maximum likelihood (MLE).7 Our estimation is based on the as-

7The truncated Gamma distribution has PDF f(d; α, β|dmin, dmax) = f(d; α, β)/ (F (dmax; α, β) − F (dmin; α, β)),
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sumption that all the disasters in the sample were independent, and that the consumption declines

occurred instantly.8 We also bound the jump size between −5% and −75%. In comparison, the

smallest and largest declines in per capital GDP in Barro’s sample are 15% and 64%, respectively.

The disaster intensity under A’s beliefs is still λA = 1.7%. The remaining parameters are: the

mean growth rate and volatility of consumption without a disaster, ḡ = 2.5% and σc = 2%, which

are consistent with the US consumption data post WWII.

As for agent B, we assume that she agrees with the values of ḡ and σc, but we estimate the

truncated Gamma distribution of disaster size using MLE from annual per-capita consumption

data in the US 1890-2008.9 Over the sample of 119 years, there are three years where consumption

falls by over 5%. Thus, we set λB = 3/119 = 2.5%. Alternatively, we can also jointly estimate λB

and the jump size distribution.

Panel A of Figure 6 plots the probability density functions of the log jump size distributions for

the two agents, which are very different from each other. The solid line is the distribution fitted to

the international data on disasters. The average log drop is 0.36, which is equivalent to 30% drop

in the level of consumption. In the US data, the average drop in log consumption is only 0.075, or

7.3% in level. In addition, agent A’s distribution has a much fatter left tail than B. Thus, while

A assigns significantly higher probabilities than B to large disasters (where consumption drops by

15% or more), agent B assigns more probabilities to small disasters, especially those ranging from

5 to 12%. In fact, agent B’s beliefs are close to the calibration adopted by Longstaff and Piazzesi

(2004), who assume that the jump in aggregate consumption during a disaster is 10%.

The differences in beliefs lead the two agents to insure each other against the types of disasters

they fear more about, and the trading can be implemented using a continuum of disaster insurance

contracts with coverage specific to the various disaster sizes. Panel B plots drops in the equilibrium

consumption (level) for the two agents when disasters of different sizes occur, assuming that agent

B owns 10% of total wealth. The graph shows that through disaster insurances, agent A is able

to reduce her consumption loss in large disasters (comparing the solid line to the dotted line). For

example, her own consumption will only fall by 24% in a disaster where aggregate consumption

where f(x; α, β) and F (x;α, β) are the PDF and CDF of the standard Gamma distribution with shape parameter α
and scale parameter β.

8These assumptions are debatable. For example, many of the major declines cross European countries are in
WWI and WWII. Moreover, many of the declines spanned several years. See Donaldson and Mehra (2008) for more
discussions on the issue of observation frequency.

9The data is taken from Robert Shiller’s web site http://www.econ.yale.edu/∼shiller/data.htm
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Figure 6: Calibrated Disagreements: International vs US Experiences. Panel A plots the
truncated Gamma distribution of disaster size for the two agents. Panel B plots the equilibrium
consumption drops for the two agents given the size of the disaster. Panel C and D plot the equity
premium and jump-risk premium under A’s beliefs.

falls by 40%, a sizable reduction especially considering the small amount of wealth that agent B

has. At the same time, she also provides insurances to B on smaller disasters, which increases

her consumption losses when such disasters strike. Agent B’s consumption changes are close to a

mirror image of agent A’s. However, the changes are magnified both for large and small disasters

due to her small wealth share.

Panel C shows the by-now familiar exponential drop in the equity premium as the wealth share

of agent B increases. The equity premium is 4.4% when all the wealth is owned by the agents who

form their beliefs about disasters based on international data, but drops to 2.0% when just 10% of

total wealth is allocated to the agents who form their beliefs using only the US data. The main

reason for the lower equity premium is again due to the decrease of the jump-risk premium (Panel
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D), which falls from 6.5 to 4.0 when agent B’s wealth share rises to 10%. This effect alone drives

the equity premium down to 2.4%. Notice that the jump-risk premium is no longer monotonic in

the wealth share of agent B. This is because when agent A has little wealth, she would be betting

against small disasters so aggressively that the big losses for her during small disasters can cause

the jump-risk premium to rise again.

In summary, this calibrated model of heterogeneous beliefs demonstrates that our main finding

that risk sharing quickly reduces the equity premium is robust to general specifications of beliefs

and is quantitatively important. Next, we conclude this section by discussing the implications of

heterogeneous beliefs for survival.

4.5 Survival

Models with heterogeneous beliefs (or preferences) often have the undesirable property of non-

stationarity in the sense that one type of agents will dominate in the long-run (a notable exception

is (Chan and Kogan 2002)). Our model also has the property that the agent with correct beliefs

will dominate in the long run.10 We now show that although agents with incorrect beliefs may not

have permanent effects on asset prices, their effects may be long-lived in the sense that agents can

retain, and even build, wealth over long horizons.

With disaster intensity λt being constant, to analyze the wealth distribution over time, we need

only consider the distribution of the stochastic Pareto weight, ζ̃t. We consider the first example from

Section 4, where disagreement is over the frequency of disasters of fixed size. From (3), we see that

ζ̃t has a stochastic component, whereby the Pareto weight (and thus wealth) of the pessimistic agent

will jump up when a disaster occurs. This is because the pessimist receives insurance payments

from the optimist in a disaster. However, regardless of the occurrence of disasters, there is also a

deterministic component in ζ̃t, whereby the optimist has a deterministic weight increase (and thus

her relative wealth increases) which comes from collecting the disaster insurance premium. Thus,

even when the pessimist has correct beliefs, her relative wealth will decrease outside of disasters.

Since disasters are rare, it will be common to have extended periods without disasters, during which

time an optimistic agent will gain relative wealth.

10This is easy to see, since when PA = P, the data-generating measure, the stochastic Pareto weight ζ̃t is a
P-martingale. It then follows that log ζ̃t is a P- supermartingale and that log ζ̃t → −∞ almost surely.
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Table 1: Survival of Agents who Disagree about the Frequency of Disasters. This table
provides the redistribution of wealth across a 50 year horizon. Future relative wealth is determined
only by the initial wealth, the time horizon, and the number of disasters that occur. The model
specification is provided in Section 4.1. The top panel provides the possible wealth redistributions
throughout time. The bottom panel provides the probability (under each Agent’s beliefs) for
different numbers of disasters occurring.

Final Wealth of B after Nd Disasters

Initial Wealth of B Nd = 0 Nd = 1 Nd = 2 Nd = 3

1.0% 1.2% 0.6% 0.3% 0.1%
5.0% 6.1% 3.0% 1.5% 0.7%
10.0% 12.2% 6.0% 2.9% 1.4%
50.0% 55.7% 35.5% 19.3% 9.6%
90.0% 91.7% 84.2% 71.7% 53.5%
95.0% 95.9% 91.9% 84.6% 72.3%
99.0% 99.2% 98.3% 96.7% 93.5%

Probability under PA 95.1% 4.8% 0.1% 0.0%
Probability under PB 42.7% 36.3% 15.4% 4.4%

Table 1 presents a summary of the conditional distribution of wealth after 50 years for various

initial wealth distributions for the example in Section 4.1. We report the results under the assump-

tion that either the pessimist or optimist has correct beliefs. If the number of disasters is either

0 or 1, the wealth of the agents remain relatively close to the original distribution. We see that

the optimist is likely to retain wealth for long periods of time and will only be wiped out with the

occurrence of several disasters, which is unlikely regardless of whose beliefs are correct.

The survival results presented thus far stand in sharp contrast to survival in models of dis-

agreement over Brownian consumption growth. As discussed in Section 3, it is possible to raise the

equity premium under the true measure if there are agents who are pessimistic about the growth

rate of consumption. For example, if the volatility of consumption is σc = 2.0%, two types of

agents have γ = 4 and ρ = 3%, one believing (correctly) consumption growth is 2.5%, the other

believing it is 0% (no disasters), then the equity premium will be roughly 2.5% when the pessimist

controls most of the wealth in the economy. However, even if the pessimist controls 99% of the

wealth initially, her wealth share will be reduced to less than 1% after 50 years with a probability

of 92.4%. Thus, even a very small amount of agents with correct beliefs will quickly dominate the

economy in the Gaussian setting.
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While the above example suggests that optimistic agents gain wealth share outside of disasters,

this may not be true in general cases. A key factor behind the dynamics of the wealth distribution

is the deterministic component of the log Pareto weight, which depends on the difference in the two

agents’ beliefs about disaster intensities, but not the distribution of disaster size. In the example

of Section 4.4, the “optimistic” agent believes disasters occur more frequently but are less likely

to be severe. Thus, outside of disasters, this agent will lose wealth as she spends more on buying

insurances against small disasters than she makes from selling insurances against large disasters.

She will also lose wealth share in big disasters, but will gain wealth share in small disasters. In

such cases, survival at moderately long horizons becomes more sensitive to the exact specification

of the disagreement.

5 Heterogeneous Beliefs: Time-varying Disaster Risk

In the previous section we have analyzed in depth the impact of heterogeneous beliefs when disaster

intensity is constant. Now we extend the analysis to allow the risk of disasters and the amount of

disagreements about disasters to vary over time, which not only makes the model more realistic, but

also has important implications for the dynamics of asset prices. As in Gabaix (2009) and Wachter

(2009), time-varying disaster intensity serves to drive both asset prices and expected excess returns.

We now demonstrate that within our framework, wealth distribution becomes an important factor

that drives asset price dynamics through the risk sharing mechanism. In particular, it affects how

sensitive the conditional risk premium will be to time variation in disaster risk.

Our calibration of the intensity process λt in equation (2) is as follows. First, the long-run mean

intensity of disasters under the two agents’ beliefs are λ̄A = 1.7% and λ̄B = 0.1%. Next, following

Wachter (2009), we set the speed of mean reversion κ = 0.142 (with a half life of 4.9 years). The

volatility parameter is σλ = 0.05, so that the Feller condition is satisfied.11 For simplicity, we

assume that the size of disasters is constant, d̄ = −0.51, the same as in Section 4.1. The remaining

preference parameters are also the same as in the constant disaster risk case.

Figure 7 plots the conditional equity premium and the jump-risk premium under agent A’s

beliefs as functions of agent B’s wealth share wB
t and the disaster intensity λt. First, in Panel A,

holding λt fixed, the equity premium drops quickly as the wealth share of the optimistic agent rises

11The Feller condition, 2κλ̄A > σ2
λ, ensures that λt will remain positive under agent A’s beliefs.
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Figure 7: Time-varying Disaster Risk. Panel A plots the equity premium under agent A’s
beliefs as a function of agent B’s wealth share (wB

t ) and the disaster intensity under A’s beliefs
(λt). Panel B plots the jump-risk premium λQ

t /λt for agent A.

from zero, which is consistent with the results from the case with constant disaster risk. Moreover,

this decline is particularly fast when λt is large, suggesting that the agents engage in more risk

sharing when disaster risk is high. Indeed, the jump-risk premium in Panel B also declines faster

when λt is large, which is the result of agent A reducing her consumption loss in a disaster more

aggressively at such times.

Next, we see that the sensitivity of the equity premium to disaster intensity can be very different

depending on the wealth distribution. The sensitivity is largest when agent A has all the wealth,

but it becomes smaller as the wealth of the optimist increases. When the optimist’s wealth share

becomes sufficiently high, the equity premium becomes essentially flat as λt varies. This result has

important implications for the time series properties of the equity premium. It suggests that when

λt fluctuates over time, the equity premium can either be volatile or smooth, depending on the

wealth distribution.
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We can understand the above results through the equity premium formula,

EA
t [Re] = σ2

cγ − Rd
t

(

λQ
t

λt
− 1

)

λt , (19)

where Rd
t is the return conditional on a disaster occurring. Variations in the wealth distribution

drive λQ
t /λt and Rd

t . Due to increased risk sharing, the jump-risk premium declines with greater

fraction of wealth controlled by the optimistic agent. As a result, the premium becomes less

sensitive to variations in λt. Moreover, we see in Panel B of Figure 7 that the effect of wealth on

the jump risk premium depends on the disaster intensity – when the disaster intensity is high, the

risk sharing motives are very strong, resulting in larger effect on the jump risk premium when the

optimistic agent controls even a small amount of wealth. Finally, the returns in disasters also vary

somewhat with the wealth distribution as the price-consumption ratio changes after a disaster.12

To further investigate the time series properties of the model, we simulate the disaster intensity

λt and the jump component of aggregate endowment cd
t under agent A’s beliefs, which jointly

determine the evolution of the stochastic Pareto weight ζ̃t. Then, along the simulated paths, we

compute the equilibrium wealth fraction of agent A, wA
t , and the conditional equity premium under

A’s beliefs, EA
t [Re]. In each simulation we start with λ0 = 1.7% and set the initial wealth share of

agent A wA
0 = 90%. The results from two of the simulations are reported in Figure 8.

Panel A plots the paths of λt from the simulations. The disaster intensities from both simula-

tions are fairly persistent, and show similar amount of variation over time. What are not shown in

this graph are the occurrences of disasters. In Simulation I, there are no disasters. In Simulation

II, disasters occur three times within the first 50 years, around year 13, 18, and 46.

What determines the evolution of the wealth distribution? When there are no disasters, holding

λt fixed, agent A is losing wealth share to B as she pays B the premium for disaster insurance. This

effect is captured by the negative drift in the Radon-Nikodym derivative ηt (see equation (3)), and

is stronger when λA
t is larger. In addition, as λt falls (rises), the value of the disaster insurance

that agent A owns falls (rises), causing her wealth to fall (rise) relative to agent B, who is short

the disaster insurance. As Panel B shows, the second effect appears to be the main force driving

12Again, the price-consumption ratio rises as the more pessimistic agents control wealth as the decreased expected
cash flow effect is dominated by the decreased discount rate due to EIS being linked to risk aversion and being less
than one. The two panels in Figure 7 show that the main effect on risk premium is risk aversion and not the elasticity
of intertemporal substitution.
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Figure 8: Simulation with Time-varying Disaster Risk. The results are from two simulations
of the model with time-varying disaster risk under agent A’s beliefs. Panel A plots the simulated
paths of disaster intensity. Panel B and C plot the corresponding wealth share of agent A and the
conditional equity premium she demands.

the wealth distribution in Simulation I.

When a disaster strikes, the wealth distribution can change dramatically. In Simulation II, the

wealth share of agent A jumps up each time a disaster strikes. This is because the disaster insurance

that A (pessimist) purchases from B (optimist) pays off at such times, causing the wealth of A to

increase relative to B. The size of the jump in wA
t is bigger in the first two disasters, which is due

to two reasons. First, during the first two disasters, the wealth distribution is not too concentrated

in the hands of agent A, so that agent B can still provide a fair amount of risk sharing. Second,

the first disaster occurs at times when λt is relatively high, i.e., they are less of a “surprise”. Thus,

agent A will have bought more insurance against the disaster beforehand, causing her wealth share

to rise more after the disaster.
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Panel C shows the joint effect of the disaster intensity and wealth distribution on the equity

premium. In Simulation I (no disasters), despite the fact that the optimistic agent never owns

more than 15% of total wealth and that disaster intensity λt shows considerable variation over the

period, the equity premium is below 2% nearly 90% of the time. This result confirms our finding in

Figure 7 that risk sharing between the agents keeps the premium low and smooth when the wealth

share of agent B is not too small. In contrast, the equity premium in Simulation II shows large

variation, ranging from 0.5% to 9.2%. Besides becoming significantly more sensitive to fluctuations

in λt, the premium also changes with the wealth distribution. In particular, the premium jumps up

after each disaster. Since the wealth share of agent B drops in a disaster, her risk sharing capacity

is reduced, which drives up the equity premium. As show in Figure 7, this effect is stronger when

λt is high, which is why the jump in premium is most visible after the first disaster (year 13).

6 Time-varying Disagreement

The results in the previous section not only demonstrate the large impact that risk sharing can

have on the equity premium, but also highlight the conditions under which disaster risk matters

the most. For example, the equity premium becomes higher and significantly more sensitive to

fluctuations in disaster risk λt when the optimistic agent has most of the wealth. Another way to

reduce risk sharing is by having the beliefs of the agents converge, which has been ruled out in our

model. In reality, investors’ beliefs could converge or diverge. In particular, if there is information

signaling that the risk of disasters is rising in the economy, it is possible that the optimists will

update their beliefs more than the pessimists, so that the difference in beliefs becomes smaller.

In this section, we extend the model from Section 4.1 to capture the effect of time variation

in disagreement. We assume the economy can be in one of two states, st = L,H. In state L, the

two agents’ perceived disaster intensity are λA
L and λB

L , while in state H, they become λA
H and λB

H .

The transitions between the two states are governed by a continuous-time Markov chain, with the

generator matrix

Λ =





−δL δL

δH −δH



 .

We assume that the agents agree on the transition probabilities of the Markov chain. Moreover,

they agree on the size of disasters (which is constant) as well as the Brownian risk, and have the
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same preference parameters as in Section 4.1.

The Radon-Nikodym derivative ηt now reflects the change of state st,

ηt = e
∑

i∈{L,H}(∆aiN
i
t−λA

i T i
t (eai−1)), (20)

where

∆ai = log

(

λB
i

λA
i

)

, (21)

T i
t =

∫ t

0
1{sτ =i}dτ, (22)

and N i
t counts the number of disasters that have occurred up to time t while the state is st = i.

We solve the planner’s problem in a similar way as before. Using the results on the occupation

time of continuous-time Markov chains (see e.g., Darroch and Morris (1968)), we derive the price

of aggregate consumption claim and the equity risk premium in closed form. The details of the

derivation are in Appendix C.

We first analyze the case where beliefs converge (diverge) at times when disaster risk rises

(drops). In state L we assume the risk of disasters is low, and the amount of disagreement between

the two agents is large. The actual beliefs are λA
L = 1.7% and λB

L = 0.1%, the same as in Section

4.1. In state H, the risk of disasters is higher, while the relative differences in beliefs between agent

A and B are smaller. Specifically, we assume that λA
H = 2.5% and λB

H = 1.25%, so that agent A

still views disasters twice as likely as agent B does. For the Markov chain, we set δL = 0.1 and

δH = 0.5, so that the high-disaster-risk state is more transitory.

Panel A of Figure 9 presents the results. Notice first that if there is no switching between the

two states, the model in state L becomes identical to the one in Section 4.1, which is why the

equity premium and jump-risk premium in state L without switching match exactly the results in

Figure 2. Next, when there is a 10% probability of moving into a high-disaster-risk state within a

year, there is almost no visible effect on the equity premium in state L. When the economy is in

state H, the equity premium rises, especially at times when agent B has a nontrivial share of total

wealth. For example, when the economy moves from state L to H, the equity premium agent A

demands rises from 4.7% to 7% when B has no wealth. If agent B has 20% of total wealth, the
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Figure 9: Time-varying Disagreement. Panel A plots the equity premium in the case where
beliefs converge in the state with higher disaster risk. Panel B plots the premium as a function of
the amount of disagreement for given wealth distribution.

equity premium increases from 1.7% to 5.2%. The rise in premium is in part due to higher disaster

risk, as λA rises from 1.7% to 2.5%. Another reason is that there is less disagreement between

the two agents in state H, as λA
H/λB

H < λA
L/λB

L . Hence, there is less risk sharing between the two

agents, and the pessimistic agent will have to bear bigger losses in consumption in a disaster. This

is why the decline of the premium with agent B’s wealth share is slower in state H.

Panel A also shows that agent A demands a higher equity premium in state H when there is

a possibility of leaving the state and entering a state with lower disaster risk, as opposed to being

forever stuck in the state of high disaster risk. This result might be surprising, because a nonzero

probability of switching lowers the disaster risk in the long run. The reason for this result is again

risk sharing. Anticipating the possibility of moving into the low disaster-risk state, the pessimist

has less incentive to trade with the optimist to insure herself. This effect tends to dominate the

effect of a lower disaster intensity in the long run, leading to a higher premium in the equilibrium.

The opposite is true in state L. That is, when there is a possibility of switching to state H, the

premium in state L not only does not rise, but actually falls, albeit the quantitative effect is small

for the given parameters.

Panel B of Figure 9 isolates the effects of time-varying disagreement on the equity premium
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by conducting a mean-preserving spread in the beliefs of the agents in one state while holding the

wealth distribution fixed. In this exercise, we assume that there is no disagreement in state L,

λA
L = λB

L = 1.7%. The beliefs in state H satisfy (1 − wB)λA
H + wBλB

H = 1.7%, where wB is the

wealth share of agent B. Thus, as we increase the disagreement about disaster intensity between

the two agents in state H, the wealth-weighted average belief remains the same. We measure the

the amount of disagreement with the standard deviation in beliefs,

Disagreement Measure =
√

(1 − wB)(λA
H − 1.7%)2 + wB(λB

H − 1.7%)2.

Again, we set the transition probabilities of the Markov chain to be δL = 0.1 and δH = 0.5.

As Panel B shows, holding the average belief constant, the premium can fall substantially as the

amount of disagreement increases. As a benchmark, the dash-dotted line gives the equity premium

(under agent A’s beliefs) in state L. Since the agents have the same beliefs in that state, the

premium remains at 4.7% as the amount of disagreement increases in state H. The solid line plots

the equity premium in state H when the two agents have equal share of total wealth. The premium

falls from 4.7% to 0.9% when λB
H drops from 1.7% to 0.1% (where the disagreement measure is

0.016). When agent B has just 20% of total wealth, the premium falls by a smaller amount to 2.9%

(when the disagreement measure reaches 0.008). An interesting implication of this graph is that

the premium can actually be decreasing while the average belief of disaster risk increases, provided

that there is enough increase in the amount of disagreement at the same time.

In summary, besides the variation in disaster risk and wealth distribution across agents with

heterogeneous beliefs, time variation in the amount of disagreement across agents can be another

importance source of fluctuations in disaster risk premium.

7 Concluding Remarks

We demonstrate the equilibrium effects of reasonable disagreement about disasters on risk premia

and trading activities. When agents disagree about disaster risk, they will insure each other against

the types of disasters they fear most. Because of the highly non-linear effect of disaster size on

risk premia, the risk sharing provided by a small amount of agents with heterogeneous beliefs can

significantly attenuate the effect of disasters on the equity premium. The model also has several
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important implications for the dynamics of asset prices.

We should emphasize that our results do not necessarily diminish the importance of disaster

risk for the equity premium. The effectiveness of risk sharing hinges on complete markets. The

amount of disaster insurance being traded in our model, while still within the limit imposed by the

budget constraint, can be difficult to implement in practice due to moral hazard. Even exchange

trading and daily mark-to-market will not eliminate the counterparty risks associated with these

contracts, because disasters will lead to sudden large changes in prices. From this perspective, our

results highlight the importance of incorporating market incompleteness in disaster risk models.

It would be very useful to study what happens to asset prices when we limit the risk sharing

among investors with heterogeneous beliefs about disasters, perhaps by imposing transaction costs,

borrowing constraints, and short-sales constraints13 as in Heaton and Lucas (1996).

Another possible way to reduce the effects of heterogeneous beliefs is through ambiguity aver-

sion. As Hansen (2007) and Hansen and Sargent (2009) show, if investors are ambiguity averse,

they deal with model/parameter uncertainty by slanting their beliefs pessimistically. In the case

with disaster risk, confronting investors with the same model uncertainty facing econometricians

could lead them to behave as if they believe the disaster probabilities are high, even though their

actual priors might suggest otherwise. This mechanism could reduce the heterogeneity of the dis-

torted beliefs among agents, thus limiting the effects of risk sharing. We leave these implications

to future research.

13Since the primary risk in the aggregate endowment claim is disaster risk, shorting the stock might serve as a
close substitute to buying disaster insurance.
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Appendix

A Securities’ prices and portfolio positions

In this appendix we compute the prices of the claim on aggregate endowment (stock), the claim

on individual agents’ consumption streams (agents’ personal wealth), disaster insurance, and the

equilibrium portfolio positions. We begin with the general setting of time-varying disaster intensity.

To concentrate on the effects of heterogeneous beliefs, we assume that the two agents have the same

relative risk aversion γ.

A.1 Aggregate and individual consumption claim prices: general setting

The price of the aggregate endowment claim is

Pt =

∫ ∞

0
Et

[

Mt+T

Mt
Ct+T

]

dT , (A.1)

where Mt is the stochastic discount factor

Mt = e−ρtC−γ
t

(

1 + (ζ0e
log ηt)

1
γ

)γ
. (A.2)

This price can be viewed as a portfolio of zero coupon aggregate consumption claims

MtP
t+T
t = Et[Mt+T Ct+T ]

= e−ρ(t+T )eT [ḡ(1−γ)+ 1
2
σ2

c (1−γ)2]e(1−γ)ct × Et

[

e(1−γ)cd
t+T

(

1 + (ζ0e
log ηt+T )

1
γ

)γ]

.

Under our assumption of integer γ, the final term will be a sum of expectations of the form

Et[e
(1−γ)cd

t+T +βi log ηt+T )] = eAi(T )+(1−γ)cd
t +βi log ηt+Bi(T )λt ,
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where (Ai, Bi) satisfy a simplified version of the familiar Riccati differential equations

Ḃi = −
λ̄B

λ̄A
βi − κBi +

σ2
λ

2
B2

i + (φ(〈1 − γ, βi〉) − 1) , B0(0) = 0 , (A.3a)

Ȧi = κθBi , Ai(0) = 0 , (A.3b)

where φ is the moment generating function of jumps in 〈cd
t , at〉.

It follows that price/consumption ratio of the zero-coupon equity varies only with the stochastic

weight ζ̃t and the disaster intensity:

P t+T
t = Cth

T (λt, ζ̃t) . (A.4)

Next, agent A’s wealth PA
t =

∫∞
0 Et

[

Mt+T

Mt
CA

t+T

]

dT at time t is a portfolio of her zero coupon

consumption claims

MtP
A,t+T
t = Et[Mt+T CA

t+T ]

= e−ρ(t+T )eT [ḡ(1−γ)+ 1
2
σ2

c (1−γ)2]e(1−γ)ct × Et

[

e(1−γ)cd
t+T

(

1 + (ζ0e
log ηt+T )

1
γ

)γ−1
]

.

We can compute agent A’s wealth process by making a similar binomial expansion as in the case of

Pt, and then computing the expectation concerning the same affine jump diffusion process. Finally,

the wealth process of agent B is simply PB
t = Pt − PA

t .

A.2 Special case: constant disaster risk

Closed form expressions can now be obtained in the special case of constant disaster intensity and

constant disaster size. Let’s denote ζ̃t ≡ ζ0e
log ηt . Again by expanding the binomial for the cases

with integer γ,

Et [Mt+T Ct+T ] = e−ρ(t+T )Et

[(

1 + (ζ̃t+T )1/γ
)γ

C1−γ
t+T

]

= e−ρ(t+T )C1−γ
t

γ
∑

k=0





γ

k



Et

[

(ζ̃t+T )k/γC1−γ
t+T

C1−γ
t

]

.
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Plugging in the explicit expressions for aggregate consumption Ct, the stochastic discount factor

Mt, and performing the simple affine jump diffusion expectation we obtain

P t+T
t = Ct

γ
∑

k=0

αk,te
−βkT , (A.5)

with

αk,t ≡





γ

k





(ζ̃t)
k/γ

(1 + (ζ̃t)1/γ)γ
, (A.6a)

βk ≡ ρ + (γ − 1)ḡ −
1

2
σ2

c (γ − 1)2 − λ̄(e
(γ−1)d̄+ k∆a

γ − 1) +
λ̄k

γ
(e∆a − 1) , (A.6b)

where ∆a is given in (5).

Finally, integrating over time T yields the explicit price of aggregate endowment claim

Pt =

∫ ∞

0
P t+T

t dT = Ct

γ
∑

k=0

αk,t

βk
. (A.7)

The restriction βA
k > 0 is needed to ensure finite value for Pt. We will come back to this type of

restriction below.

By identical approach, we obtain the price of agent A’s consumption claim (i.e. her wealth

process)

PA
t =

∫ ∞

0
PA,t+T

t dT = Ct

γ−1
∑

k=0

αA
k,t

βk
, (A.8)

where βk remains the same as above and

αA
k,t ≡





γ − 1

k





(ζ̃t)
k/γ

(1 + (ζ̃t)1/γ)γ
. (A.9)

Price of disaster insurance

Let PDI
t,t+T denotes the price of disaster insurance which pays $1 at maturity time t + T if there

was at least one disaster taking place in the time interval (t, t + T ). In the main text we consider
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disaster insurance PDI
t of maturity T = 1 in particular.

PDI
t,t+T = Et

[

Mt+T

Mt
1(Nt+T >Nt)

]

=
e−ρT

(CA
t )−γ

Et

[

(CA
T )−γ1(Nt+T >Nt)

]

=
e(−ρ−γḡ+ 1

2
γ2σ2

c )T

(1 + (ζ̃t)1/γ)γ
Et[e

γd̄∆NT (1 + (ζ̃t+T )1/γe(∆a∆NT −λ̄T (e∆a−1))/γ)γ1(∆NT >0)]

=
e(−ρ−γḡ+ 1

2
γ2σ2

c )T

(1 + (ζ̃t)1/γ)γ
{Et[e

γd̄∆NT (1 + (ζ̃t+T )1/γe(∆a∆NT −λ̄T (e∆a−1))/γ)γ ]

− (1 + (ζ̃t)
1/γe−λ̄T (e∆a−1)/γ)γProb(∆NT = 0)} ,

where ∆NT ≡ Nt+T − Nt is number of disasters taking place in [t, t + T ], and Prob(∆NT =

0) = e−λ̄T is the probability that no such disaster did happen. Again by expanding the binomial

(1 + (ζ̃t+T )1/γe(∆a∆NT −λ̄T (e∆a−1))/γ)γ , and then computing the expectation of each resulting term,

we obtain

PDI
t,t+T =

aT

(1 + (ζ̃t)1/γ)γ
{[

γ
∑

k=0

bk,T (ζ̃t)
k/γ ] − e−λ̄T (1 + (ζ̃t)

1/γe−λ̄T (e∆a−1)/γ)γ} , (A.10)

where

aT = e(−ρ−γḡ+ 1
2
γ2σ2

c )T , (A.11a)

bk,T =





γ

k



 e−λ̄kT (e∆a−1)/γeλ̄T [e
(γd+∆ak

γ )
−1] . (A.11b)

Equilibrium portfolio positions

In the current case of constant jump size with two dimensions of uncertainties (Brownian motion

and disaster jump), the market is complete when agents are allowed to trade contingent claims on

aggregate consumption (stock) Pt, money market account RFBt and disaster insurance PDI
t . We

can use generalized Ito lemma on jump-diffusion price processes PA
t , Pt, PDI

t to write generically
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(where indexes b and j respectively correspond to Brownian and jump shocks)

dPA
t = σPA,bdWt + σPA,j + O(dt) , (A.12)

where σPA,b = PAσc; σPA,j = PA
t+ − PA

t− .

dPt = σP,bdWt + σP,j + O(dt) , (A.13)

where σP,b = Pσc; σP,j = Pt+ − Pt− .

dPDI
t = σDI,bdWt + σDI,j + O(dt) , (A.14)

where σDI,b = 0; σDI,j = RFBt,t+T − PDI
t ,

where the sensitivity of disaster insurance with respect to the jump is derived from the fact that,

immediately after the jump, the disaster insurance will surely pays 1$ at maturity, so its post-jump

price is equal to that of a riskfree bond RFBt,t+T of the same maturity.

From another perspective, the self-financing property of agent A’s portfolio {θA
P,t, θ

A
DI,t, θ

A
RFB,t}

(these are agent A’s positions in stock, disaster insurance and instantaneously risk-free bond re-

spectively):

dPA = θA,P
t dSt + θA,DI

t dPDI
t + θA,RFB

t dRFBt + O(dt) , (A.15)

= #dt + (θA,P
t θA,DI

t )





σP,b σP,j

σDI,b σDI,j









dWt

∆Nt



 .

By identifying the diffusion and jump parts of dPA in (A.12), (A.15) we have

(θA,P
t θA,DI

t )





σP,b σP,j

σDI,b σDI,j



 = (σPA,b σPA,j) ⇒





θ1,P
t

θ1,DI
t



 =





σP,b σDI,b

σP,j σDI,j





−1



σPA,b

σPA,j



 .

We need the “sensitivities” σP,b, σDI,b, σP,j , σDI,j, σPA,b, σPA,j in (A.12), (A.13), (A.14) to determine
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the portfolio positions.





θA,P
t

θA,DI
t



 =





σP,b 0

σP,b σDI,j





−1



σPA,b

σPA,j



 =





σPA,b

σP,b

−σP,jσPA,b

σP,bσDI,j + σPA,j

σDI,j



 .

And agent A’s position in money market account

θA,RFB
t = PA

t − θA,P
t Pt − θA,DI

t PDI
t . (A.16)

We note in particular, from (A.12), (A.13) we have σPA,b = PAσc, σP,b = Pσc, so agent A’s stock

position is θA,P
t = σPA,b

σP,b =
P A

t

Pt
, or value fraction invested in stock of agent A is always one

θA,P
t Pt

PA
t

= 1 . (A.17)

Thus from (A.16), agent A’s position is riskless bond is θA,RFB
t = −θA,DI

t PDI
t . Finally, agent B’s

portfolio positions can be found from market clearing condition: θB,P = 1− θA,P ; θB,DI = −θA,DI;

θB,RFB = −θA,RFB.

B Boundedness of prices

This appendix discusses the boundedness of securities prices in general heterogeneous-agent econ-

omy. As claimed in the main text, as long as agents have different but equivalent beliefs, necessary

and sufficient condition for finite price of a security in heterogeneous-agent economy is that this

price be finite under each agent’s beliefs in a single-agent economy. The proof proceeds as follows.

Suppose that the security pays dividend stream Dt (which can be either continuous or discrete

in time). Let us denote S, SA, SB its prices in heterogeneous-agent, and single-agent economies
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respectively.

SA
t = Et

[

∫ ∞

0

ζ̃A
t+τC

−γA

t+τ

ζ̃A
t C−γA

t

Dt+τdτ

]

,

SB
t = Et

[

∫ ∞

0

ζ̃B
t+τC

−γB

t+τ

ζ̃B
t C−γB

t

Dt+τdτ

]

,

St = Et

[

∫ ∞

0

ζ̃A
t+τ (C

A
t+τ )−γA

ζ̃A
t (CA

t )−γA
Dt+τdτ

]

= Et

[

∫ ∞

0

ζ̃B
t+τ (C

B
t+τ )−γB

ζ̃B
t (CB

t )−γB
Dt+τdτ

]

,

where the last equality is a consequence of the FOC in heterogeneous-agent economy.

Necessary condition S < ∞ ⇒ SA, SB < ∞: This is immediate by noting that since individual

consumptions are always non-negative 0 ≤ CA
t+τ , CB

t+τ ≤ Ct+τ ∀τ , we have

ζ̃A
t+τ (C

A
t+τ )−γA

≥ ζ̃A
t+τC−γA

t+τ ⇒ St ≥ SA
t ∀t,

and thus SA
t is finite whenever St is finite. By identical reason, SB

t is finite whenever St is finite.

Sufficient condition SA, SB < ∞ ⇒ S < ∞: This is straightforward by noting that, for any

fixed number k ∈ (0, 1) (without loss of generality, we can e.g. fix k = 0.5 to visualize this):

CA

C
< k ⇔

(CA)−γA

C−γA
> k−γA

⇒
CB

C
> 1 − k ⇔

(CB)−γB

C−γB
< (1 − k)−γB

,

and vice versa. That is, at any moment t + τ , the integrand of price S is always bounded (up to a

finite factor) by either the integrand of SA or SB. Now as both SA, SB are finite, S is also finite.14

This necessary and sufficient condition for bounded prices in heterogeneous-agent economy

forms the rigorous basis to derive the explicit and adequate parameter restrictions (15a-15b) in

single-agent. Let us consider the zero-coupon equity price in an economy with only agent i’s

presence (i = 1, 2).

1

M0
Ei

0 [MtCt] ∼ e−ρtEi
0

[

C1−γi

t

]

= e−ρtEi
0

[

e(1−γi)ct

]

dct = ḡdt + σcdW c
t + ∆ct .

14The technical point that sum of possibly infinite numbers of same-direction inequalities remain an inequality of
same direction is assured simply by the boundedness of both SA, SB .
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Concerning the affine jump part (1 − γi)∆ct ∼ (1 − γi)dJt, the expectation is exponential affine,

with coefficients satisfying Riccati ODEs

Ei
0

[

e(1−γi)Jt

]

∼ eAt+Btλi
0

dBt

dt
= −κBt +

1

2
σ2

λB2
t + (φPi(1 − γi) − 1);

dAt

dt
= κλ̄iBt; A0 = 0 .

For this expectation to be finite, it is necessary that Bt be bounded and thus dBt

dt assume negative

value at least in some parameter region. That is,

inf
dBt

dt
= −

1

2

κ2

σ2
λ

+ (φPi(1 − γi) − 1) < 0 ⇒ κ2 > 2σ2
λ(φPi(1 − γi) − 1) , (B.1)

for both i = 1, 2. This is (15a).

Asymptotically, Bt tends to its attracting fixed point B∗ (at which point dBt

dt = 0 and dBt

dt

changes its sign from positive to negative as Bt increases from left to right of B∗)

B∗ =
κ −

√

κ2 − 2σ2
λ(φPi(1 − γi) − 1)

σ2
λ

=
κ −

√

κ2 + 2σ2
λ(1 − φPi(1 − γi))

σ2
λ

. (B.2)

For equity price to be finite, the time integrand

e−ρtEi
0

[

C1−γi

t

]

∼ e[−ρ+(1−γi)ḡ+ 1
2
(γ1−1)2σ2

c+κλ̄iB∗]t ,

needs to be decreasing, or

−ρ + (1 − γi)ḡ +
1

2
(γi − 1)2σ2

c + κλ̄iB∗ < 0 , (B.3)

for both i = 1, 2. This is (15b) after we plug in the above expression for B∗.

C Time-varying Disagreement

The model solution is generally analogous to the case without Markov regime-switching, so we

sketch the major differences between the models.
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The key expectations to compute are of the form

EA
0 [eaNL

t +bNH
t +cT L

t +dT H
t ], (C.1)

where N i
t is the number of disasters that occur in state i and T i

t is the occupation time in state

i defined in (??). These expectations can be computed by first conditioning on the path of the

Markov state and using the conditional independence of the Poisson process in each state:

EA
0 [eaLNL

t +bHNH
t +cT L

t +dT H
t ] = EA

0

[

EA
0 [eaLNL

t +bHNH
t +cT L

t +dT H
t |{Sτ}

t
τ=0]

]

(C.2)

= E0

[

e(λA
L (ea−1)+c)T L+(λA

H(eb−1)+d)T H
]

(C.3)

This reduces the problem to computing the joint moment-generating function of the occupation

times (TL
t , TH

t ). Darroch and Morris (1968) show that this expectation reduces to

EA
0 [eαT L

t +βT H
t ] = π′

0 exp (At)~1, where A = Λ +





α 0

0 β



, (C.4)

andπ0 is either (1, 0)′ or (0, 1)′, as the initial state is L or H.

The price of consumption claims involve sums of integrals of such expectations. These integral

can be computed in closed form by diagonalizing A to deliver closed form expressions for the prices

of interest.

D Heterogeneous Risk Aversion

Intuitively, besides heterogeneous beliefs, heterogeneity in risk aversion should also be able to induce

risk sharing among agents and reduce the equity premium in equilibrium. Recall that the jump-risk

premium is λQ
t /λi

t = e−γi∆ci
t, which is not only sensitive to changes in individual consumption loss

∆ci
t, but also to the relative risk aversion γi. Thus, we expect that heterogeneous risk aversion can

have similar effects on the equity premium as heterogeneous beliefs about disasters.

To check this intuition, we consider the following special case of the model. Agent A is the same

as in the example of Section 4.1: λA = 1.7%, γA = 4. Agent B has identical beliefs about disasters

but is less risk averse: λB = 1.7%, γB < γA. Figure 10 plots the equity premium as a function
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Figure 10: The effects of heterogeneous risk aversion. This graph plots the equity premium
when the two agents have different risk aversion: γA = 4, γB = 2. Their beliefs about disasters are
specified in the legend. Disaster size is constant.

of agent B’s wealth share for γB = 2. The equity premium does decline as agent B’s wealth share

rises. However, the decline is slow and closer to being linear. In order for the equity premium to

fall below 2%, the wealth share of the less risk-averse agent needs to rise to 60%. The decline in

the equity premium becomes faster as we further reduce the risk aversion of agent B (not reported

here), but the non-linearity is still less pronounced than in the cases with heterogeneous beliefs.

Combining heterogeneous beliefs about disasters and different risk aversion can amplify risk

sharing and accelerate the decline in the equity premium. As shown in the figure, if agent B

believes disasters are less likely than does agent A, and she happens to be less risk averse, the

equity premium falls faster. Consider the case where agent B believes disasters only occur once

every hundred years (λB = 1.0%). With 20% of total wealth, she drives the equity premium down

by almost a half to 2.5%. If λB = 0.1%, the decline in the equity premium will be even more

dramatic.
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