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Abstract

We consider the classic problem of estimating group treatment effects, such as school effects, on an
outcome when people sort into groups based on observed and unobserved individual characteristics that
affect the outcome. We show that under some circumstances standard choice models imply that group
averages of observed individual-level characteristics can serve as controls for all of the across-group
variation in the unobservable individual characteristics. This permits estimation of a lower bound for the
variance of group treatment effects across groups. We use the idea to provide lower bound estimates of
the effect of school systems and associated neighborhoods on high school graduation, college attendance,
and earnings. Across three data sets, our most conservative estimates indicate that choosing a 90th
quantile school and surrounding community instead of a 10th quantile school increases the probability of
high school graduation by between 0.047 and 0.085 and increases the college attendance probability by
between 0.11 and 0.13. We also find large effects on adult earnings. We discuss a number of applications
of our methodology, including the measurement of teacher value added.

This research uses data from the National Center for Education Statistics as well as from North Carolina Education Research
Data Center at Duke University. We acknowledge both the U.S. Department of Education and the North Carolina Department of
Public Instruction for collecting and providing this information.



1 Introduction

Society is replete with contexts in which (1) the outcome of an individual depends on both individual

and group-level inputs, and (2) the group is endogenously chosen either by the individuals themselves or

by administrators, partly based on the individual’s own inputs. Examples include health outcomes and

hospitals, earnings and workplace characteristics, and test scores and teacher value-added.1 Generations

of social scientists have been interested in determining whether group outcomes differ because the groups

influence individual outcomes or because the groups have succeeded or failed in attracting the individuals

who would have thrived regardless of the group chosen. In some cases, sources of exogenous variation are

available that may be used to assess the consequences of a particular group treatment. However, assessing

the overall distribution of group treatments is much more difficult.

In this paper we show that in some circumstances the tactic of controlling for group averages of observed

individual-level characteristics (denoted Xs), generally thought to control for “sorting on observables” only,

will absorb all of the between-group variation in both observable and unobservable individual inputs. We

then show how this insight can be used to estimate a lower bound on the variance in the contributions of

group-level treatments to individual outcomes.

We apply our methodological insight and demonstrate its empirical value by addressing a classic question

in social science: How much does the school and surrounding community that we choose for our children

matter for their long run educational and labor market outcomes?2 To demonstrate the sorting problem con-

sider the following simplified regression model relating education outcomes to individuals’ characteristics

and the inputs of the schools/neighborhoods they choose. Let Ysi denote the outcome (e.g. attendance at
1Ash et al. (2012) provide a overview of the issues in assessing hospital outcomes. Doyle Jr et al. (2012) also discuss the issues

and provide a short literature survey. They are among a small set of studies that use a quasi-experimental design to assess effects
of a particular hospital characteristics on outcomes. See Chetty et al. (2014) and Rothstein (2014) for discussions and references
related to the estimation of teacher value-added.

2See Duncan and Murnane (2011) for recent papers on school and neighborhood effects, with references to the literature. Meghir
and Rivkin (2010) discuss alternative approaches to estimating school fixed effects and the effects of particular school inputs, and
highlight the problem of endogenous selection of schools and neighborhoods, among other econometric issues.
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four-year college) of student i who attends and leaves near school s.3 Ysi is determined according to4

Ys,i = [Xiβ +XU
i β

U ] + [ZsΓ + ZUs ΓU ] . (1)

Let the vectors Xi and XU
i be the complete set child and family characteristics that have a causal impact

on student i’s educational attainment. Xi is observed by the econometrician and XU
i is unobserved. Anal-

ogously, the row vectors Zs (observed) and ZUs (unobserved) capture the complete set of school and neigh-

borhood level influences common to students live in s, so that the school/neighborhood treatment effect is

given by [ZsΓ + ZUs ΓU ].

Unfortunately, sorting will lead the school average of XU
i , XU

s , to vary across s. This will contaminate

estimates of Γ and fixed effect estimates of the school treatment effect ZsΓ +ZUs ΓU . While various studies

have included controls for group-level averages of individual observables (denoted Xs), the role played by

such controls in mitigating sorting bias has generally been underappreciated.

Our key insight follows directly from the parent’s school/neighborhood choice decision—average values

of student characteristics differ across schools only because students/families with different characteristics

value school or neighborhood amenities differently. This means that school-averages of individual character-

istics such as parental education, family income, and athletic ability will be functions of the vector of amenity

factors (denoted As) that parents consider when making their school choices. Thus, the school averages Xs

and XU
s will be different vector-valued functions of the same common set of amenities: Xs = f(As) and

XU
s = fU (As). The functions f and fU , are determined by the sorting equilibrium and reflect the equilib-

rium prices of the amenities. If the dimension of the underlying amenity space is smaller than the number of

observed characteristics, then under certain conditions one can invert this vector-valued function to express

the amenities in terms of school-averages of observed characteristics: As = f−1(Xs). But this implies that

the vector of school averages of unobserved characteristics can also be written as a function of observed

characteristics: XU
s = fU (f−1(Xs)). This function of Xs can serve as a control function for XU

s when

estimating group effects.
3Despite the growing popularity of open enrollment systems, most school choice is still mediated through choice of community

in which to live, and most students still choose schools close to home even when given the opportunity. Thus, we aim instead to
measure the importance of the combined school/neighborhood choice.

4Later we will introduce additional components to the outcome model.
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We formalize this intuition by introducing a multidimensional spatial equilibrium model of school choice

and providing conditions under which this mapping is exact. In this model we show that the average unob-

served student variables XU
s are a linear function of Xs. As we make precise in Proposition 1 below, X and

XU need not affect preferences for all of the amenities A. Partition XU
s into a subset XU

1s that is correlated

Xs and a subset XU
2 that is not correlated with Xs. Roughly speaking, the keys are that (1) X and/or XU

1s

affects preferences for all amenities that any elements of XU
2 shifts preferences for, and (2) that there are

enough elements of X to span this amenity space.

To take a simple example, suppose that school/neighborhood combinations differ in only one dimension

that people observe and systematically care about—perceived school quality—plus a random idiosyncratic

component specific to each family/location combination.5 Suppose further that parental education (ob-

served) and whether the parent is religious (unobserved) both increase willingness-to-pay for school quality,

and that both affect the outcome Yit. In equilibrium the expected values of both parent’s education and

religiousness will be increasing in perceived school quality, so that the neighborhood average of parents’

education will be a perfect proxy for the neighborhood average of religiousness. Now suppose number of

churches also varies across neighborhoods and that religiousness influences willingness to pay for conve-

nient access to churches but education does not. Then variation in the number of churches would lead to

between-neighborhood variation in average religiousness that average parent’s education could not predict.

In this case we would need to control for the neighborhood average of another observable characteristic (e.g.

parents’ income) that either directly affects willingness-to-pay for number of churches or is correlated with

religiousness.

However, while this control function approach potentially solves the sorting-on-unobservables problem,

the group averagesXs control for too much. They will absorb peer effects that depend onXs andXU
s . They

will also absorb a part of the unobserved school/neighborhood quality component that is both orthogonal to

the observed school characteristics and is correlated with the amenities that families consider when choosing

where to live. As a result, our estimator will provide a lower bound on the variance of the overall contribution

of schools/neighborhoods to student outcomes.
5As will be made clear below, the weights families place on the amenities may also depend on other unobserved characteristics

that do not have a direct effect on the outcomes of interest. These additional characteristics are the κ∗i variables in the analysis
below.
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The empirical part of the paper applies the control function approach in the school choice context. Im-

plementation requires rich data on student characteristics for large samples of students from a large sample

of schools, as well as longer-run outcomes for these students. We use four different datasets that generally

satisfy these conditions: three cohort-specific panel surveys (NLS72, NELS88, and ELS2002) and adminis-

trative data from North Carolina.

For each dataset, we provide lower bound estimates of the overall contribution of differences in the

school system and neighborhood quality to the variance in student outcomes: high school graduation, enroll-

ment in a four-year college, and adult wages (NLS72 only). In addition, we also convert each lower-bound

variance estimate into a lower bound estimate of the impact on the chosen outcome of moving from a school

system and surrounding neighborhood at the 10th quantile in the distribution of school contributions to a

50th or 90th quantile system (a more intuitive scale).

Even our most conservative North Carolina results suggest that, averaging across the student population,

choosing a 90th quantile school and surrounding community instead of a 10th quantile school increases the

probability of graduation by at least 8.4 percentage points. In the NELS88 and ELS2002 the corresponding

are estimates of 4.7 and 6.8 percentage points, respectively, although these may be less reliable due to

sampling error in school average characteristics. We estimate large average impacts despite the fact that

our lower bound estimate only attributes between 1 and 4 percent of the total variance in the latent index

determining graduation to schools. However, the average impact of moving to a superior school on binary

outcomes such as HS graduation or college enrollment can be quite large even if differences in school quality

are small, as long as a large pool of students are near the decision margin.

Estimates of the impact of a shift in school environment on the probability of enrolling in a four-year

college and on the permanent component of adult wages (only in NLS72) are similarly large: choosing a

90th quantile school and surrounding community instead of a 10th quantile school increases the probability

of four-year college enrollment by at least 11-13 percentage points (across all three survey datasets), and

increases adult wages by 19 percent (in NLS72).

The methodological part of the paper draws on and contributes to a number of literatures. First, the basic

idea that observed choices reveal information about choice-relevant factors unobserved by the econometri-
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cian has been utilized in a number of settings, including the estimation of firm production functions6, labor

supply functions 7, distinguishing between uncertainty and heterogeneity in earnings8, and even neighbor-

hood effects9.

Second, this paper contributes to the theoretical sorting literature by presenting an analytical solution to

a multidimensional sorting problem.10 Third, this paper also overlaps with the literature on identification

in multinomial choice models in which preferences for observed and (in some papers) unobserved product

characteristics depend on both observed and unobserved consumer attributes. Much of this literature is

focused on estimating preferences and the sensitivity of choice to relative prices and product characteristics

in world in which product prices will depend on product characteristics.11 To the best of our knowledge,

we are the first to point out that the relationship between sorting on observables and unobservables implied

by multinomial choice models and hedonic demand models implies that group averages of observables can

serve as a control for group averages of unobservables.12

The empirical part of the paper adds to a large literature on school and neighborhood effects.13 A

number of recent papers in this literature have employed experimental or quasi-experimental strategies to
6See Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg et al. (2006), among others.
7See Metcalf (1974), Altonji (1982) and many subsequent studies of labor supply that use consumption or savings decisions as

an (endogenous) proxy for the marginal utility of income or permanent wage rates.
8See Cunha et al. (2005), who exploit the fact that school choice will respond only to information about earnings returns that is

known to the individual when the choice is made.
9Bayer and Ross (2006) consider using neighborhood house prices as a control function in estimating the impact of neighbor-

hood characteristics. This approach, however, requires that the underlying amenities that determine neighborhood desirability can
be combined into a single index of neighborhood quality.

10We consider an arbitrarily large number of amenities and draw out implications of the first order conditions of the consumer’s
choice problem for sorting. In the Appendix we present a closed form solution to the model for the special case in which amenities
are exogenous and in particular do not depend on group characteristics. Many of the papers in the equilibrium sorting literature
consider the case in which group characteristics affect choice but typically do not provide analytical solutions, although they may
be computed. See Epple and Sieg (1999), Bayer et al. (2007), and Bayer and Timmins (2005). Much of this literature is centrally
concerned with the question of how individuals will sort in equilibrium as a function characteristics of a location, school, product,
insurance contract, etc. The model we explicitly solve has a continuum of choices, and so relates closely to the hedonic demand
literature, building on Rosen (1974), Heckman et al. (2010) among others. Browning et al. (2014) survey the literature on sorting
in marriage markets. A number of recent papers analyse labor market sorting based on firm and worker quality (e.g, Lise et al.
(2013)). In parallel work Lindenlaub (2013) presents a closed form solution to the equilibrium of a labor market in jobs differ in
the skill vectors they require and workers vary in the skill vectors they supply.

11See for example, McFadden et al. (1978), McFadden (1984), Berry (1994), Berry and Pakes (2007) and Bayer and Timmins
(2005).

12Despite the similarity in titles, our analysis is completely distinct from that of Altonji et al. (2005) and Elder et al. (2009). These
papers examines the econometric implications of how observed variables are drawn from the full set of variables that determine the
outcome and the treatment variable of interest.

13A recent example, with references to the literature, is Altonji and Mansfield (2011a). Altonji and Mansfield (2011b) discusses
a number of econometric issues involved, not all of which we discuss here. It also presents detailed evidence on the distribution
across schools of a rich set of student and family background characteristics as well as variance decompositions of school outcomes
that is similar to some of the evidence below. This paper grew out of our dissatisfaction with the treatment of sorting in our prior
work and other papers and can be viewed as a drastic revision of Altonji and Mansfield (2011b)
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isolate the contribution of either schools or neighborhoods to longer run student outcomes. Oreopoulos

(2003) and Jacob (2004) use quasi-random assignment of neighborhood in the wake of housing project

closings to estimate the magnitude of neighborhood effects on student outcomes. Similarly, the Moving To

Opportunity experiment, evaluated in Kling et al. (2007), randomly assigned housing vouchers that required

movement to a lower income neighborhood to estimate neighborhood effects. None of these studies finds

evidence that moving to a low-poverty neighborhood improves economic outcomes. However, using a very

different approach that exploits high quality data from tax records, Chetty and Hendren (In Progress) identify

neighborhood effects on long-run outcomes that are more consistent with our results.14

Deming et al. (2014), by contrast, exploit randomized lottery outcomes from the school choice plan in the

Charlotte-Mecklenburg district to estimate the impact of winning a lottery to attend a chosen public school

on high school graduation, college enrollment, and college completion. They find large effects. Winning the

lottery for students from low quality urban schools is large enough to close 75 percent of the black-white

gap in graduation and 25 percent of the gap in bachelor’s degree completion. large effects. On the other

hand, Cullen et al. (2006) use a similar identification strategy with lotteries in Chicago Public Schools and

find little effect on the high school graduation probability.

In contrast to these papers, we do not exploit any natural experiments. Instead, we show that rich

observational data of the type collected by either panel surveys or administrative databases can nonetheless

yield meaningful insights about the importance of school and neighborhood choices for children’s later

educational and labor market performance.

The rest of the paper proceeds as follows. Section 2 presents our model of school choice, while Section 3

formally derives our key control function result. Section 4 describes and presents results from a monte carlo

analysis of the finite sample properties of control function. Section 5 presents a simple model of long-run

student outcomes. Section 6 describes our empirical methodology for placing lower bounds on school and

neighborhood contributions to long run student outcomes. Section 7 describes the four datasets we use to

estimate the model of outcomes. Section 8 presents our results. Section 9 adapts our model to the classroom

assignment context, and derives its implications for estimating teacher value-added. Section 9 discusses
14Furthermore, Aliprantis (2011) argues that if one relaxes the assumption that the poverty rate is a sufficient static for a neigh-

borhood’s contribution to outcomes, then the support of experimentally-induced changes in neighborhood quality from MTO is too
narrow to draw meaningful conclusions about the importance of the full distribution of neighborhood quality.
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other applications of our methodology. We give special emphasis to the problem of assessing teacher value

added. Section 10 closes the paper with a brief summary of our empirical results and a discussion of potential

theoretical extensions.

2 A Multinomial Model of School Choice and Sorting

In this section we present a model of how parents/students choose school systems and associated neigh-

borhoods, with the goal of placing minimal structure on parental preferences.

Assume that each location s ∈ {1, ..., S} can be characterized by a vector of K underlying latent ameni-

ties As ≡ [A1s, . . . , AKs]
′.15 We adopt a money-metric representation of the expected utility for the parents

of student i from choosing school/neighborhood s, so that Ui(s) can be interpreted as the family’s consumer

surplus from their choice. We assume the utility function takes the following linear form:

Ui(s) = λiAs − Ps + εs,i (2)

where λi ≡ (XiΘ +XU
i ΘU + κi) (3)

λi is a 1 × K vector of weights that captures the increases in family i’s willingness to pay for a school

per unit increase in each of its amenity factors A1s, . . . , Aks, respectively. Ps is the price of living in the

neighborhood surrounding school s, and εs,i is an idiosyncratic taste of the parent/student i for the particular

location s.

The second equation projects the willingness-to-pay for particular amenities across parent/student com-

binations onto these families’ observable (Xi) and unobservable (XU
i ) characteristics. In particular, suppose

that Xi has LO elements, while XU
i has LU elements. Then Θ (ΘU ) is an LO ×K (LU ×K) matrix whose

Θ`k-th entry (ΘU
`k-th entry) captures the extent to which the willingness to pay for amenity Ak can be pre-

dicted given the determinant x`i (xU`i) of student outcomes. The 1×K vector κki captures the components of

i’s taste for the amenities A1, . . . , AK that is unpredictable given [Xi, X
U
i ]. Since [Xi, X

U
i ] is the complete

set of student variables that determine Ys,i, the elements of κi influence school choice but have no direct

15The “prime” symbol denotes denotes matrix or vector transposes throughout paper.
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effect on student outcomes.

Expected utility is taken with respect to the information available when s is chosen. The information set

includes the price and the amenity vector in each school/neighborhood as well as student/parent characteris-

tics [Xi, X
U
i ]. The information set excludes any local shocks that are determined after the start of secondary

school. It also excludes components of neighborhood and school quality that are not observable to families

when a location is chosen. The set of amenities may include school/neighborhood characteristics that influ-

ence educational attainment and labor market outcomes. Some of the amenities may include aspects of the

demographic composition of the school/neighborhood and thus are outcomes of the sorting equilibrium.

Parents i choose the school s(i) if net utility Ui(s(i)) is the highest among the options. That is, s(i) is

determined by

s(i) = arg max
s=1,..,S

Ui(s)

3 The Link Between Group Observables and Group Unobservables

Next we characterize the equilibrium allocation of students to schools from the above choice model

under some simplifying assumptions. For analytic simplicity, in Section 3.1 we first consider a version

of the school choice model in which (a) we ignore the idiosyncratic school-family taste match by setting

εis = 0 ∀ i, s, and (b) we assume that S is sufficiently large so that it can be well approximated by a

continuum of neighborhoods that create a continuous joint distribution of amenities A. We revisit the finite

choice case in Section 3.1.2.

3.1 Using the First Order Conditions of the Family’s Choice Problem to Determine the Link

Between Xs and XU
s

Under assumptions (a) and (b), choosing a school is equivalent to choosing the vector of amenities

that maximizes utility, given the price function Ps = P (As). In addition, we assume that parents behave

competitively in the sense that prices are taken as given and choice is unrestricted. We also assume that

the equilibrium price function P (A) is increasing and convex, so that prices rise at an increasing rate as
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amenities increase.16

The optimal choice is characterized by a system of K first order conditions, one for each amenity factor.

The conditions are

λ′i ≡ Θ
′
X
′

i + ΘU
′
XU ′
i + κ

′
i = ∇P (As(i)) , (4)

where ∇P (As(i)) is the K × 1 column vector of partial derivatives of P (A) with respect to A, evaluated at

A = As(i). The conditions say that the family chooses a community with a level of A such that the family’s

willingness to pay for additionalA is equal to the marginal cost. Since P (A) is strictly convex, second order

conditions will be satisfied.

We now use (4) to study the relationship between XU
s and Xs. First, decompose XU

i into its projection

on Xi and the orthogonal component X̃u
i :17

XU
i = XiΠXUX + X̃u

i (5)

Use the decomposition (5) to rewrite λi as λi = XiΘ̃ + X̃U
i ΘU + κi, where Θ̃ = [Θ + ΠXUXΘU ]. We are

now prepared to present the main proposition of the paper:

Proposition 1: Assume (i) preferences are given by (2) and (3), (ii) εis is 0 ∀ (i, s), (iii) the price function

P (A∗) is increasing and strictly convex in A∗, and (iv) the rows of the coefficient matrix ΘU relating tastes

for A to Xu are spanned by the rows of the coefficient matrix Θ̃. Then the expectation XU
si is linearly

dependent on the expectation Xsi . Specifically,

XU
s(i) = Xs(i)[ΠXUX + V ar(Xi)

−1R
′
V ar(XU

i )]. (6)

16In Appendix 3 we explicitly solve for P (A∗s) under stronger assumptions and show that it is increasing and strictly convex.
17We use the symbol ΠDQ to denote the vector of the partial regression coefficients relating a dependent variable or vector of

dependent variables D to a vector of explanatory variables Q, holding the other variables that appear in the regression constant. In
the case of ΠXUX , In this equation D = XU

i and Q = Xi.
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3.1.1 Proof of Proposition 1:

Consider the projection of Xi and X̃U
i onto λi. Note that since (1) X̃U

i is uncorrelated with Xi by

construction, and (2) κi is uncorrelated with both Xi and X̃U
i ,

Cov(λi, Xi) = Θ̃
′
V ar(Xi) (7)

Cov(λi, X̃
U
i ) = ΘU ′V ar(X̃U

i ). (8)

Thus, these projections can be written as

Xi = λiV ar(λi)
−1Θ̃

′
V ar(Xi) + errorXi (9)

X̃U
i = λiV ar(λi)

−1ΘU ′V ar(X̃U
i ) + errorX̃

U

i . (10)

Using the first order conditions (4), we can rewrite these equations as:

Xi = ∇P (As(i))
′
V ar(λi)

−1Θ̃
′
V ar(Xi) + errori

X̃u
i = ∇P (As(i))

′V ar(λi)
−1ΘU ′V ar(X̃U

i ) + errori .

Note that since choice of s(i) depends on Xi, X̃U
i , and κi only through the K × 1 index vector λi, the error

terms in the vector equations above are unrelated to s(i). Taking conditional expectations of both sides of

the above equations with respect to the chosen school s(i), we obtain:

Xs(i) ≡ E(Xi|s(i)) = ∇P (As(i))
′
V ar(λi)

−1Θ̃
′
V ar(Xi) (11)

X̃U
s(i) ≡ ∇P (As(i))

′
V ar(λi)

−1ΘU ′V ar(X̃U
i ). (12)

By the spanning assumption (iv),

ΘU = RΘ̃ (13)
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for some : LU × LO matrix R. Substituting the condition (13) for ΘU in 12 implies that

X̃u
si = E(X̃u

i |si) = ∇P (A∗Si)
′V ar(λi)

−1Θ̃
′
R
′
V ar(XU

i )

= ∇P (A∗Si)
′V ar(λi)

−1Θ̃
′
V ar(Xi)V ar(Xi)

−1R
′
V ar(XU

i )

= XsiV ar(Xi)
−1R

′
V ar(XU

i ) (14)

where the third line follows from substitution using (11). Note that from (5), we have

XU
s(i) = Xs(i)[ΠXUX + V ar(Xi)

−1R
′
V ar(XU

i )] . (15)

This completes the proof.

3.1.2 Interpreting Proposition 1: When Will the Spanning Assumption Hold?

Proposition 1 reveals that the between school component of the vector of student-level unobservables,

XU
si , will be an exact linear function of its observable counterpart Xs as long as the coefficient vectors

relating tastes for amenities to the XU
i are linear combinations of the coefficient vectors relating tastes

for amenities to the observables Xi and/or elements of XU
i that are correlated with Xi. Remarkably, the

dependence between XU
s(i) and Xs(i) exists even if XU

i is uncorrelated with Xi.18

The key restriction on preferences in Proposition 1 is the spanning condition (iv), which implies that

ΘU = RΘ̃ for some LO × LU matrix R. What is the role that this condition plays? When might it fail?

We can gain some intuition by reconsidering the more general function formulation used in the intro-

duction. Let AX ⊂ A represent the subset of amenities that affect the distribution of observable school

averages Xs. Any amenity that either Xi or elements of XU
i correlated with Xi affect preferences for will

be included in AX . Likewise, AX
U ⊂ A represents the subset of amenities that affect the distribution of

unobservable school averages XU
s . The between-school variation in Xs will only be driven by AX , so that

18An interesting special case is the one in which ΘU = 0, so that unobservable characteristics do not affect location preferences.
When ΘU = 0, R = 0. One can see from the above equation or directly by substituting ΘU = 0 into (12) that in this special case
XU
si = 0, so that there is no variation in average unobservable characteristics across schools. That is, there is no sorting on XU

si . In
this case V ar(ZsG) will accurately reflect the school/neighborhood contribution to outcomes.
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Xs = f(AX) for some vector-valued function f . Similarly, XU
s = fU (AX

U
)). In order to be able to write

XU
s = fU (f−1(Xs) ≡ g(Xs), we need two conditions to be satisfied: (1) f to be invertible, so that we can

write AX = f−1(Xs), and (2) AX
U ⊂ AX , so that the amenity space that Xs spans is the relevant amenity

space that drives the variation in XU
s (and the range of f−1 encompasses the domain of fU ).

This intuition suggests that there are two fundamental ways the spanning condition ΘU = RΘ̃ can fail.

First, Xi may affect tastes for more amenities than its number of elements: |AX | > LO. In this case, f is

not invertible.19 In the case of the additively separable utility function from (2), |AX | is captured by the row

rank of Θ̃.

Second, the spanning condition can also fail if the unobservable vector XU
i affects WTP for certain

amenities that no element inXi predicts WTP for, so thatAX
U 6⊂ AX . In the case of the additively separable

utility function from equation (2), AX
U ⊂ AX if and only if the row space of ΘU is a linear subspace of the

row space of Θ̃. Note, though, that a given element of Xil can help predict WTP for a particular amenity Ak

either directly by affecting taste for the amenity (so that Θlk 6= 0), or indirectly by merely being correlated

with an element of XU
i that predicts taste for the amenity (so that the (l, k)-th element of ΠXUXΘU 6= 0).

Either will result in a non-zero value of Θ̃lk. Appendix Section 1 goes through several simple examples that

illustrate when the spanning condition will and will not be satisfied.

Are the conditions underlying the spanning assumption testable, and are they plausible? The plausibility

of condition (1) depends on the number and breadth of coverage of variables in Xi. Condition 1 is testable.

The model implies a factor structure for Xs, where the number of factors is determined by the row rank of

Θ̃. A finding that the number of factors that determine Xs is lower than the dimension of Xi is consistent

with the assumption that |AX | ≤ LO. A finding that the number of factors is at least as large as the

dimension of X is also technically consistent with the assumption, but would strongly suggest that |AX | is

larger than the dimension of Xs. It is important to point out that Proposition 1 refers to the expected values

E[Xi|s(i) = s] and E[Xu
i |s(i)] = s. The observed values of Xs and Xu

s will deviate from the expectations

when neighborhood/school sizes are not extremely large.
19More specifically, what is relevant for invertibility is not LO per se but the number of independent taste factors that these LO

observables represent. If, for example, mother’s education and father’s education were both observed, but affected willingness to
pay for each amenity in the same relative proportions, adding father’s education to Xi would not make f invertible if it were not
already when only mother’s education was included in Xi.
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We investigate the factor structure of Xs in Appendix Section 2. We find that for each of our three

survey datasets the estimated covariance matrix ofXs is rank deficient. This means that each element ofXs

can be written as a linear combination of a smaller number of latent factors (generally between 25 and 30

factors, depending on the specification and dataset). Since the rank of Cov(Xs) should reflect the number of

amenity factors |AX |, this validates our assumption that |AX | ≤ LO. Indeed, we further show that in each

dataset an even smaller number of latent factors (generally around 10) can explain 90% of the variance the

variance in the expected values Xs, suggesting that the vast majority of the sorting across schools is driven

by a handful of amenity factors.

Condition (2) is a statement about unobservables and is not testable without more structure than we

impose. However, we think that it is plausible in situations in which X contains a rich set of variables that

are likely to matter for student outcomes. For example, we use parental income but not parental wealth.

Both are likely to directly affect the education outcomes such as college attendance, so sorting on wealth

might be expected to lead to an overstatement of school effects. However, the two variables are strongly

positively correlated across families, and are both are likely to influence WTP for a similar set of amenities.

For both reasons the school average of parental income is likely to serve as a control for the school average

of parental wealth.

Note that the derivation of (6) does not require one to solve the model. If some of the neighborhood

amenities are functions of resident characteristics, the distribution of amenities will be endogenous, and

may result in multiple equilibria. However, the derivation is based only on a set of necessary first order

conditions, so the linear dependence between Xs and XU
s will hold in any equilibrium of the model. In

Appendix Section 3 we derive an analytical solution for the equilibrium mapping from student/family char-

acteristics [Xi, X
U
i , κi] to the school/neighborhood amenity vectors they choose under somewhat stronger

assumptions. The most important one is that As does not depend on which families choose s, so that the

joint distribution of amenities across neighborhoods is exogenous. This is a restrictive assumption in the

school choice setting, but may be plausible in other settings (e.g. differentiated product choice). Since ana-

lytical solutions to multidimensional sorting problems are quite rare, the solution we provide is likely to be

useful in other applications.20

20Much of the literature has either relied on models featuring a single, vertical dimension of quality or has resorted to numerical
solutions. An analytical solution to the multidimensional sorting problem allows researchers to make clearer predictions about
how the distribution of students across schools will change in response to changes in the distribution of school and neighborhood
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Finally, recall that in formally deriving the link between Xs and XU
s above, we focused on a simplified

version of our original discrete choice model in which consumers choose from a continuum of options, and

the idiosyncratic taste match component εis = 0 ∀ (i, s). Note, though, that in the additively separable

specification for utility in (2), εis enters the equation symmetrically with respect to Xi and XU
i , so that there

is no a priori reason to believe that its addition should break the link between Xs and XU
s .21 Nonetheless, in

the next section, we describe results from a series of monte carlo simulations designed to address this issue

along with a number of other issues related to finite-sample performance of our control function approach.

4 Monte Carlo Simulations

While Proposition 1 provides a strong theoretical foundation for our control function approach to distill-

ing school contributions to long run outcomes, it is derived from a continuous, infinite dimensional model

of school choice. Furthermore, Proposition 1 characterizes the link between the expectations of X and

Xu given As. With a finite number of students per school, random variation associated with κ∗i and ε∗si,

will cause sample averages to deviate from their expectations. This could weaken the link between school

averages of observable and unobservable characteristics.

To investigate these concerns, in this section we summarize the results of a series of monte carlo simula-

tions that explore the properties of our control function approach across a number of key dimensions. A full

description of our simulation methodology and results is contained in Appendix Section 4, while the results

themselves are displayed in Appendix Tables 7 and 8.

The simulations are not intended to provide a full characterization of the finite sample properties of our

estimator. Such a characterization is a daunting task given the large number of parameters that determine the

full spatial equilibrium sorting of students to schools.22 Instead, our simulations center around a stylized test

amenities, or how demand for hospitals will change as the services hospitals offer are altered. Such a solution may also aid
structural estimation of the joint distribution of amenities and of preferences, facilitating full-scale welfare analysis of proposed
policy changes.

21We conjecture that under a spanning condition analogous to (13) the quantiles of the conditional distribution of observables
f(XU

i |As(i), s(i) = s) are a function of the quantiles of the conditional distribution of unobservables f(Xi|As(i), s(i) = s)
across s. The intuition is clearest in the case when Xi, Xu

i and As are all scalars. If Θ > 0 and ΘU > 0, then increases in As
increase the willingness to pay to live in s of persons with high values of Xi relative to persons with low values. Consequently, the
quantiles of X should be higher when As is higher. The same should be true for XU

i , suggesting a link between the quantiles of
the two distributions.

22The parameters include those characterizing the joint distribution of the individual characteristics affecting choice
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case that is calibrated to represent a plausible description of the school/neighborhood choice context. These

simulations serve to 1) illustrate that the control function approach has the potential to be effective in settings

where a large population sorts into a fairly large number of groups, 2) demonstrate that re-introducing the

idiosyncratic student-school match components {εis} back into the model does not undermine the basic

control function result established in Proposition 1, 3) highlight a few key factors that play a major role in

determining the degree to which average values of observable characteristics effectively control for average

values of unobservable characteristics, and 4) show that the control function approach is relatively robust to

small departures from the conditions laid out in Proposition 1.

All of our simulations consider combinations of model parameters which imply considerable sorting

across school on a vector of unobservable characteristics. Our metric for evaluating the effectiveness of

our control function approach is the fraction of the between-group variance in the outcome contribution

of unobservable individual-level characteristics (V ar(XU
s β

U ) in our model) that can be predicted using

group-averages of observable characteristics. This is the R2 from a regression of the potential bias from

unobservable sorting, XU
s β

U , on the vector Xs.

The first key result is that the control function can work well even in settings where 1) individuals have

idiosyncratic tastes for particular groups, 2) there are only moderate number of total groups to join, and 3)

only a subset of these are considered by any given individual. In many of our simulations in such settings

over 97% of the variance in group-average values of unobservables XU
s β

U is absorbed by controlling for a

sufficiently large vector of group-average observables Xs.

The second result is that the control function approach is quite robust to the violations of the spanning

condition that involve just a few components of the individual’s unobservable outcome contribution affect-

ing willingness-to-pay for just a few additional amenities that are not weighted by any component of the

observable vector Xi. These are arguably the most plausible cases when rich data on students and parents

are available. Not surprisingly, the control function approach fails when the Xi and XU
i are orthogonal to

each other and Xi and XU
i affect willingness-to-pay for disjoint sets of amenities.

Finally, the third key result is that the effectiveness of our control function suffers when the group-

[Xi, X
U
i , κi], the joint distribution of the amenities As, and the distribution of the idiosyncratic tastes εis. The parameters also

include the Θ and ΘU matrices that capture how observed and unobserved characteristics affect willingness-to-pay.
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averages of the observables Xs are constructed using small samples of group members rather than the full

population. Due to our reliance on such small samples in our three panel survey datasets in the empirical

analysis below, we investigate this issue further for our particular school effects application in Section 7 and

Appendix Section 7.

5 A Model of Educational Attainment and Wage Rates

5.1 The Determinants of Adult Outcomes

In this section we further develop and analyze the underlying econometric model of adult outcomes

presented in the introduction. This model of outcomes provides the basis for the lower bound estimates

of school/neighborhood contributions that we present below. Our formulation draws loosely on theoretical

discussions in the child development literature, the educational production function literature, and the neigh-

borhood effects literature.23 Let Ys(i)i denote the outcome of student i whose family has chosen the school

and surrounding neighborhood s(i) ∈ {1, . . . , S}. For the rest of the section we will usually suppress the

dependence of s on i unless necessary for clarity. In our application the outcomes will be comprised of high

school graduation, attendance at a four-year college, a measure of years of postsecondary education, and the

permanent wage rate. Ys(i)i is determined according to

Ys(i),i = Xiβ +XU
i β

U + Zs(i)Γ + ZUs(i),iΓ
U + us(i),i . (16)

As discussed above, the student’s outcome contribution can be represented by the index (Xiβ + XU
i β

U ),

where the row vector [Xi, X
U
i ] is an exhaustive set of child and family characteristics that have a causal

impact on student i’s educational attainment and wages; the subvectorXi is observed by the econometrician

and the subvectorXU
i is unobserved. SinceXi andXU

i may include non-linear functions of these attributes,

imposing that the individual attributes enter linearly is without loss of generality.

Analogously, the school/neighborhood outcome contribution is captured by the index (ZsΓ + ZUs,iΓ
U ,

where the row vectorsZs andZUs,i combine to form an exhaustive set of (school and neighborhood influences

23A good example is Todd and Wolpin (2003), who provide references to the literature. See also Cunha et al. (2006).

16



experienced by student i. Zs captures the influence of observed school/neighborhood-level characteristics

(which in our empirical work do not vary among students within a school), and ZUs,i represents the remaining

unobserved school/neighborhood influences, which will vary between school attendance areas (e.g. quality

of the school principal or the local crime rate) but also within a school attendance area and within a school

itself (e.g. trustworthiness of immediate neighbors and distinct course tracks at the school). Indeed, some

elements of ZUs,i may represent the within-school components of Zs, so that such elements will contain no

between-school variation. The coefficients β, βU , Γ, and ΓU depend implicitly upon the specific outcome

under consideration as well as the time period in the case of wages.

The component us,i captures other influences on student i’s outcome that are determined after

secondary school but are not predictable given Xi, XU
i , Zs, and ZUs,i; these might include the opening or

expansion of a local college or local labor market shocks that occur after high school is completed. It will

prove useful to write us,i as us + ui, where us is common to all students at school s and ui is idiosyncratic.

Note that while we allow the levels of school/neighborhood contributions Zs or ZUs,i to co-vary with

individual-level contributions Xi and XU
i , we rule out explicit structural interactions (such as products)

between school and student characteristics. We discuss the issues involved in footnote 28 while describing

our empirical methodology.

In practice we only have data on observed student and school inputs Xi and Zs at a single point in time.

Thus, some components of Xi associated with student inputs (for example, student aptitude) will have been

determined in part by parental inputs from earlier periods (for example, parent income). Such links make it

difficult to interpret the coefficient associated with a given component ofXi, since once we have conditioned

on the other components, we have removed many of the avenues through which the component determines

Y . Consequently, we do not make any attempt to interpret individual components of the coefficient vectors

β or βU , and thus do not attempt to tease apart the distinct influences of child characteristics, family char-

acteristics, and early childhood schooling inputs, respectively. Similarly, we do not attempt to remove bias

in G stemming from correlations between Zs and the omitted school/neighborhood factors ZUs,i. We aim

instead to separate the effects of schools and associated community influences on outcomes from student,

family, and prior school/community factors.

To be more specific about what we mean by school/neighborhood effects, first decompose ZUsi into
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between- and within-school components: ZUsi = ZUs + (ZUsi − ZUs ). Then, note that if a randomly selected

student attended school s1 rather than s0, the expected difference in his/her outcome would be (Zs1Γ +

ZUs1ΓU )− (Zs0Γ +ZUs0ΓU ). The outcomes of a specific student i will also differ across schools because the

values of (ZUsi − ZUs ) and us will differ, but the former are entirely idiosyncratic and the latter are common

to those who attend s1 or s0 but are determined after high school is completed. We wish to quantify the

importance of differences across neighborhoods in ZsΓ + ZUs ΓU . Some of our estimates will also include

differences due to us.

5.2 Toward an Empirical Model

In this section we discuss the parameters that OLS recovers when outcomes are regressed on only the

student-level and school-level variables that can be observed in a survey or administrative dataset: Xi and

Zs. We show that Proposition 1 implies restrictions on these parameters that allow the recovery of a lower

bound estimate of the contribution of schools (and groups more generally) to individual outcomes. We

also demonstrate the more demanding conditions under which unbiased estimates of the causal effects of

particular group-level characteristics can be recovered.

To facilitate the analysis, first partition Zs into two subvectors [Xs, Z2s]. Xs(i) is the vector of school-

averages of observable student characteristics, while Z2s is a vector of other observed school level charac-

teristics not mechanically related to student composition (e.g. teacher turnover rate or student-teacher ratio).

Partition the coefficient vector Γ ≡ [Γ1,Γ2] analogously.

Next, consider projecting the full unobserved school contribution ZUs,iΓ
U onto the vectors of both the

observed student level (Xi) and school-level (Zs) variables:

ZUs,i =

ZUs︷ ︸︸ ︷
(XsΠZUs ,Xs

+ Z2sΠZU ,Z2s
+ Z̃Us ) +

(ZUs,i−ZUs )︷ ︸︸ ︷
(XiΠZUsi,Xi

+ ˜(ZUs,i − ZUs )) (17)

Because we include the school-averages of each student-level variable in Xi in Zs, standard partitioned re-

gression results show that Xi will not predict any of the between-school components of ZUs,i (denoted ZUs )

that Zs cannot predict. Thus, the matrix ΠZUsi,Xi
only captures the extent to which student-level observable
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characteristics predict the within-school variation in unobserved school characteristics. For example, par-

ent’s education may predict the course track the student is assigned to within the school. Likewise, [Xs, Z2s],

as a vector of school-level variables, cannot possibly predict the student-specific deviations from the vector

of school averages (ZUs,i − ZUs ). Thus, the matrices ΠZUs ,Xs
and ΠZUs ,Z2s

only capture the extent to which

unobserved influences common to all students at a school can be predicted by the vector of school-level

observables.

Next, in order to more clearly demonstrate the impact of student sorting as separate from simple omitted

variables bias, we project the vector of unobserved student-level characteristics XU
i onto the space of ob-

servable variables in two steps instead of one. In the first step, we regressXU
i on the student-level observable

vector Xi only, as in equation (5):

XU
i = XiΠXU

i Xi
+ X̃U

i (18)

The matrix ΠXU
i Xi

captures the extent to which the unobserved student-level contribution can be predicted

by the observed student-level characteristics in the full population, and contributes to standard omitted

variables bias in the coefficient on Xi even in the absence of non-random student sorting to schools. In

the second step, we project the uncorrelated residual row vector from the first-step, X̃U
i , onto both the

student-level and school-level vectors of observables (Xi and Zs):

X̃U
i = XiΠX̃U

i Xi
+XsΠX̃U

i Xs
+ Z2sΠX̃U

i Z2s
+ εX̃si , (19)

where εX̃si is row vector. If students with greater unobservable contributions to their long run outcomes are

more likely to sort into schools with particular observed characteristics Zs, then the matrices Π
X̃U
i Xs

and

Π
X̃U
i Z2s

need not equal 0. Furthermore, even though each component of the vector X̃U
i is uncorrelated with

Xi (by construction from step 1), Π
X̃U
i Xi

need not equal zero once school characteristics have been con-

ditioned on. For example, parents with low income (included in Xi) who nonetheless choose an expensive

school/neighborhood for their kids may be revealing high residual parental value for student’s education

outcomes (this unobserved characteristic might also improve their kids’ outcomes regardless of school, thus

belonging in XU
i ).
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Substituting the results from these three projections for ZUs,i and XU
i in equation (16), we obtain:

Ys,i = XiB +XsG1 + Z2sG2 + vs + (vsi − vs), where (20)

B ≡ [β + ΠZUsiXi
ΓU + (ΠXU

i Xi
+ Π

X̃U
i Xi

)βU ] (21)

G1 ≡ [Γ1 + ΠZUs Xs
ΓU + Π

X̃U
s Xs

βU ] (22)

G2 ≡ [Γ2 + ΠZUs Z2s
ΓU + Π

X̃U
i Z2s

βU ] (23)

vs ≡ Z̃Us ΓU + εX̃s β
U + us (24)

vsi − vs ≡ usi + (εX̃si − εX̃s )βU + ( ˜ZUsi − ZUs )ΓU (25)

The expressions for G1, G2 and vs in (22), (23) and (24) reveal that the observable school components

XsG1 and Z2sG2 and the unobservable component vs all reflect a mixture of school effects and student

composition biases. Specifically, the components XsG1 and Z2sG2 will reflect XsΠX̃u
i Xs

and Z2sΠX̃u
i Z2s

,

respectively, which capture differences in average unobservable student characteristics that are predictable

by Zs after conditioning on average observable student characteristics Xs. The unpredicted between-school

component vs will reflect εX̃s β
U , which captures differences in average unobservable student characteristics

that are not predictable based on observed school-level characteristics or average student-level character-

istics. XsΠX̃u
i Xs

, Z2sΠX̃u
i Z2s

and εX̃s β
U are not school/neighborhood effects, since any child who was

reallocated to a school with a higher value of these components could not expect an increase in test scores24.

This analysis suggests that without further assumptions about how students sort into schools, basic regres-

sion and variance decomposition techniques cannot be used to identify or even bound the contribution of

schools/neighborhoods to student outcomes. However, the next subsection shows that the assumptions laid

out in Proposition 1 are sufficient to place a lower bound on the variance in school and neighborhood effects

under the model of outcomes presented above.
24Note that peer effects stemming from concentration of particular types of students at a school are captured by either ZsΓ or

ZUs ΓU .
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5.3 Using Proposition 1 to Bound the Importance of School/Neighborhood Effects

Section 2 provides conditions under which the school-average values of student observables Xs and

unobservables XU
s are linearly dependent, as summarized in Proposition 1. To illustrate the value to

identification of this result, substitute the linear mapping of Xs into X̃U
s from equation (14) into the left

hand side of the projection equation for X̃U
s given by (19). One can immediately see that Π

X̃U
i Xs

=

V ar(Xi)
−1R

′
V ar(XU

i ), Π
X̃U
i Z2s

= 0, and εX̃s = 0. Thus,

G2 ≡ Γ2 + ΠZUs Z2s
ΓU (26)

vs ≡ Z̃Us ΓU + us . (27)

We see that when the conditions of Proposition 1 are satisfied, the inclusion of Xs in Zs purges both G2 and

vs of biases from student sorting, so that V ar(Z2sG2) and V ar(vs) only reflect true school/neighborhood

contributions and, in the case of vs, later common shocks. However, the components ˆV ar(Z2sG2) and

ˆV ar(vs) only permit a lower bound estimate of the importance of school and neighborhood effects, for

three reasons. The first and obvious one is that the causal effect of Xs on outcomes, XsΓ1, will be excluded

from estimates of school/neighborhood effects. If peer effects are important, this could lead to a substantial

underestimation of the importance of school/neighborhood effects. Second, if the school mean XU
s has

external effects, it is part of ZUs and therefore enters the outcome equation separately from the individual

level variable XU
i β

U . Since this component will be absorbed by XsĜ1, school/neighborhood peer effects

associated with XU
s will be excluded from the estimate of school/neighborhood effects.

Finally, equation (22) reveals that Xs will also absorb part of the unobserved school contribution ZUs

via ΠZUs Xs
ΓU . To see why, note that note that Xs spans the space of XU

s because the variation in both

Xs and XU
s is driven by the same underlying variation in the desired amenity vector, {A1s, A2s, ...AKs}.

Re-examining equation 11 above, we see that if Θ is of full column rank and the vector-valued function

∇P (As) is invertible, then the system of equations can be inverted and the vector As = [A1s, A2s, ...AKs]
′

can also be written as a linear combination of some K-length subvector of Xs (XU
s ):

[A′s = ∇P−1(XsV ar(Xi)
−1Θ̃

′−1
V ar(λi)) . (28)
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Given that parents are likely to value the contributions of schools to student outcomes, many of the char-

acteristics that affect school quality ZUs are likely to be reflected in {A1s, A2s, ...AKs}. Hence, while the

inclusion of Xs in the estimated specification is effective in controlling for unobserved sorting, it also ab-

sorbs some of the variation in the underlying amenity factors for which Xs affects taste. Furthermore, if

some elements of the school-level observablesZ2s also serve directly as amenities inAs, then these elements

will be collinear with Xs, undermining our ability to estimate the vector G2.

On the other hand, components of school/neighborhood quality Z2sΓ2 +ZUs ΓU that are either unvalued

or not fully known (or knowable) by parents at the time the school/neighborhood is chosen will not be

reflected in the vector of amenities A1s, A2s, ...AKs that are the basis of choice. Such components will

still produce variation in average outcomes across schools, and will break the collinearity between Xs and

Z2s. Similarly, if the outcome is measured after high school is completed, any common shocks that affect

the outcomes of all those who attended a particular high school will also not be absorbed by Xs, yet will

produce between-school variation in outcomes.

5.3.1 Identification of Γ2

The existence of ΠZUs Z2s
ΓU in the expression for G2 in (26) reveals that even when the conditions of

Proposition 1 are satisfied, G2 still reflects omitted variables bias driven by correlations between Z2 and the

unobserved school characteristics in ZU . Thus, estimating the vector of causal effects Γ2 associated with

the school characteristics in Z2 will in general still require a vector of instruments.

However, the sorting model in Section 2 also sheds light on the circumstances in which ΠZUs Z2s
= 0, so

that Ĝ2 represents an unbiased estimator of the vector of causal effects Γ2.25 In particular, suppose that each

element of ZUs is either an amenity considered by individuals at the time of choice or is perfectly predicted

by the vector of amenities, so that ZUs = ΠZUs As
As, for some matrix ΠZUs As

. Furthermore, suppose the

matrix Θ̃ has full column rank and ∇P (As) is invertible, so that equation (28) holds. This implies that

school averages of observed student characteristics Xs also perfectly determine ZUs . In this case, there will

be no residual variation in ZUs for Z2s to predict in equation (17), so that ΠZUs Z2s
= 0, and Ĝ2 will be an

25V ar(ZUs ) = 0 will also lead to unbiased estimates of Γ2, but requires the unrealistic assumption that all outcome-relevant
school inputs are observed.
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unbiased estimator of Γ2.

Because we suspect that there are a large array of outcome-relevant school inputs, not all of which are

directly and accurately valued by parents when choosing schools, we do not assume that ΠZUs Z2s
= 0 in

our empirical work. Thus, we do not attempt to interpret the individual coefficients estimated by Ĝ2.26

However, this analysis does suggest that controlling for group-averages of individual characteristics can

potentially remove a considerable amount of omitted variable bias from estimated coefficients on group-level

characteristics. This is particularly true in contexts where most of the group-level characteristics expected to

have substantial causal effects are thought to be considered and at least noisily observed by those choosing

groups. We return to this point when considering the estimation of teacher value-added in our discussion of

other applications in Section 9.

6 Estimating the Contribution of Schools and Neighborhoods

6.1 Variance Decomposition

In the empirical work below, we estimate models of the form

Yi = Xiβ +XsG1 + Z2sG2 + vsi, (29)

where Xs is a vector of school-averages of student characteristics, and Z2s is a vector of observed school

characteristics (such as school size or student-teacher ratio).

Consider rewriting this estimating equation as:

Yi = (Xi −Xs)β +Xsβ +XsG1 + Z2sG2 + ZUs G
U + (vsi − vs) + vs (30)

Then we can decompose the variance in Yi into observable and unobservable components of both within-
26See Meghir and Rivkin (2011) for a recent discussion of some of the issues in estimating the effects of particular school

characteristics. A key source is the omitted school characteristics ZUs .
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and between- school variation via:

V ar(Yi) = V ar(Yi − Ys) + V ar(Ys) (31)

= [V ar((Xi −Xs)β) + V ar(vsi − vs)]+ (32)

[V ar(Xsβ) + 2Cov(Xsβ,XsG1) + 2Cov(Xsβ, Z2sG2) + V ar(XsG1)+ (33)

2Cov(XsG1, Z2sG2) + V ar(Z2sG2) + V ar(vs)] (34)

Motivated by the model of sorting presented in Section 2, we introduce two alternative lower bound

estimates of the contribution of school/neighborhood choice to student outcomes.

The first is V ar(Z2sG2) + V ar(vs). Due to the presence of Xs, it will be purged of any effects of

student sorting (observable or unobservable). Thus, it isolates only school/neighborhood factors. However,

in addition to the unpredicted component school/neighborhood contributions (Z̃Us ΓU ), V ar(vs) will in-

clude us, common location-specific shocks (such as local employment demand shocks) that occur after high

school has been completed for the chosen cohort. One can argue that such shocks should not be attributed

to schools because they are beyond the control of school or town administrators. Consequently, we also

consider a second, more conservative lower bound estimate: V ar(Z2sG2). This estimate only attributes to

schools/neighborhooods the part of residual between-school variation that could be predicted based on ob-

servable characteristics of the schools at the time students were attending. V ar(Z2sG2) excludes true school

quality variation that is orthogonal to observed characteristics, but also removes any truly idiosyncratic local

shocks that occur after graduation.

The static sorting model presented in Section 2 is silent about the point in time in a student’s childhood

the school/neighborhood decision is made. To illustrate how different assumptions about timing affect the

interpretation of our bounds, consider first the case in which changing schools/communities is costless, so

that each family decides each year where to live and send their children to school. In this case, if the data

are collected in 10th grade (as in ELS2002), then any impact of prior schools/neighborhoods can be thought

of as entering the outcome equation by altering the observable or unobservable student contributions Xi

and XU
i . Thus, if prior schooling inputs affect willingness-to-pay for school/neighborhood amenities, our

control function argument suggests that 10th grade school averages of Xi and XU
i will absorb all between-
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school variation in prior school contributions. In this case, the residual variance contributions V ar(Z2sG2)

or V ar(Z2sG2 + vs) that we identify will represent a lower bound on the contributions of only the high

schools and their surrounding neighborhoods to our outcomes.

Now consider the opposite extreme: moving costs are prohibitive, and each family makes a one time

choice about where to settle down when they begin to have children. Suppose that the observed character-

istics Xi are unaffected by early schooling.27 Then the average values of Xi will span the subspace of the

school/neighborhood amenities and of the average values of XU
i as they existed when the family made its

choice. In this scenario, the residual variance contributions V ar(Z2sG2) or V ar(Z2sG2 + vs) that we iden-

tify will represent a lower bound on the variation in contributions to our later outcomes of entire sequences

of schools (elementary, middle, and high) and entire childhoods of neighborhood exposure. In reality,

of course, moving costs are substantial but not prohibitive, so that are estimates probably reflect a mix of

elementary school and high school contributions, with a stronger weight on high school contributions. How-

ever, note that as long as high school quality in a neighborhood is positively correlated with elementary and

middle school quality, a lower bound estimate of the variance in high school contributions is itself a (very

conservative) lower bound estimate of the variance of contributions of entire school systems. Thus, since

our goal is to create an inviolable lower bound, the safest interpretation is that our estimates represent lower

bounds on the variance in the cumulative effects of growing up in different school systems/neighborhoods.

Appendix Sections 5 and 6 describe the process by which the coefficients B, G1, and G2 are estimated,

as well as the process by which the empirical variance decomposition is performed. The implementation

differs depending on whether the outcome is binary or continuous.

6.2 Measuring the Effects of Shifts in School/Community Quality

The fraction of outcome variance unambiguously attributable to school/neighborhood factors provides a

good indication of the importance of school/community factors relative to student-specific factors. However,

the effect of a shift in school/community quality from the left tail of the distribution to the right tail of the

distribution might be socially significant even if most of the outcome variability is student-specific. This
27As outlined in Section 7 below, we choose a set of variables in Xi that satisfies this property in our baseline specification for

each dataset.
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is particularly true in the case of binary outcomes such as high school graduation and college enrollment,

where many students may be near the decision margin. Below we report estimates of the effect of a shift

in the unknown/unvalued component of school/neighborhood quality from 1.28 standard deviations below

the mean to 1.28 standard deviations above the mean. This would correspond to a shift from the 10th

percentile to the 90th percentile if this component has a normal distribution. We interpret these as lower

bound estimates of the average change in outcomes from a 10th-to-90th quantile shift in the full distribution

of school/neighborhood quality, where the average is taken over the distribution of student contributions.

The more comprehensive estimate measures the unknown component of schoo/neighborhood quality

via V̂ ar(Z2sG2 + vs), while the more conservative estimates that attempt to remove common shocks use

V̂ ar(Z2sG2).

For the binary outcomes, we estimate the effect of the shift in Z2sG2 as a weighted average over indi-

viduals i:

Enoshocks[Ŷ 90 − Ŷ 10] = (35)

Φ(
[XiB̂ +XsĜ1 + Z2sĜ2 + 1.28(V ar(Z2sG2)).5]

(1 + V̂ ar(vs)).5
) (36)

− Φ(
[XiB̂ +XsĜ1 + Z2sĜ2 − 1.28(V ar(Z2sG2)).5]

(1 + V̂ ar(vs)).5
) (37)

This weighted average effectively integrates over the distribution ofXiβ+XsG1+vs,i, but uses the empirical

distributions of Xiβ and XsG1 (since they are observed) instead of imposing normality. Note that the scale

of the latent index Yi is unobserved, so we have normalized V ar(vsi − vs) to 1.

We estimate the effect of the shift in Z2sG2 + vs analogously via:

Ew/shocks[Ŷ 90 − Ŷ 10] = (38)

Φ(
[XiB̂ +XsĜ1 + Z2sĜ2 + 1.28(V ar(Z2sG2 + vs))

.5]

(1)
) (39)

− Φ(
[XiB̂ +XsĜ1 + Z2sĜ2 − 1.28(V ar(Z2sG2 + vs))

.5]

(1)
) (40)
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We also report lower bound estimates of the impact of a shift from a school at the 10th percentile of

quality to one at the 50th percentile. For the binary outcomes, the impact of a 10th-90th percentile shift

in either Z2sG2 or (Z2sG2 + vs) will depend on the values of a student’s observable characteristics, XiB.

Thus, we report average impacts for certain subpopulations of interest as well.28

7 Data

Our analysis uses data from four distinct sources. The first three sources consist of panel surveys con-

ducted by the National Center for Education Statistics: the National Longitudinal Study of 1972 (NLS72),

the National Educational Longitudinal Survey of 1988 (NELS88), and the Educational Longitudinal Survey

of 2002 (ELS2002). These data sources possess a number of common properties that make them well suited

for our analysis. First, each samples an entire cohort of American students. The cohorts are students who

were 12th graders in 1972 in the case of NLS72, 8th graders in 1988 for NELS88, and 10th graders in 2002

for ELS02. Second, each source provides a representative sample of American high schools or 8th grades

and samples of students are selected within each school. Both public and private schools are represented.29

Enough students are sampled from each school to permit construction of estimates of the school means

of a large array of student-specific variables and to provide sufficient within-school variation to support a

between-/within-school variance decomposition. Third, each survey administered questionnaires to school

administrators in addition to all sampled individuals at each school. This provides us with a rich set of

both individual-level and school-level variables to examine, allowing a meaningful decomposition of ob-

servable versus unobservable variation at both levels of observation. Fourth, each survey collects follow-up

information from each student past high school graduation, facilitating analysis of the impact of high school
28Recall that we have ruled out interactions between Xi or XU

i and Zs or ZUs in the production of Yi. To see how such
nonseparabilities might be addressed, consider the simple case in which the interaction involves observed student and school
characteristics. Suppose, for example, that low income students benefit disproportionately from a low student teacher ratio, one of
the elements of Z2s. One could add the interaction between family income and the student/teacher ratio to the outcome equation.
If Proposition 1 holds, then the interaction between family income and the student teacher ratio will be unrelated to the error term
conditional on Xs, which includes the mean of family income. One can estimate the coefficient on the interaction term.

However, more generally, with nonseparable models schools may no longer be ordered. The best school for a low income student
may not be the best school for a high income student. When the nonseparability involves observed variables, one may rank schools
based on their average performance over the distribution of observed characteristics, and define the 10th and 90th percentile schools
accordingly. Alternatively, one could identify the 10th percentile school and the 90th percentile school for each student, evaluate
the difference in outcomes that the two schools, and then average over all students.

29We include private schools because they are an important part of the education landscape. However, the connection between
characteristics of the school and characteristics of the neighborhood may be weaker for private school students.
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environment on two or more of the outcomes economists and policymakers care most about: the dropout

decision, college enrollment and completion decisions, and wage profiles.

While these common properties are very helpful, each survey displays idiosyncratic features and ques-

tions that complicate efforts to compare results across time. In our previous work (Altonji and Mansfield

(2011a)) we restricted attention only to variables that are available and measured consistently across all three

datasets. However, because the efficacy of the control function approach introduced in this paper depends

on the richness and diversity of our student-level measures, for each dataset we include in X student-level

measures that may not appear in the other datasets.

In our “baseline” specification we only use student-level characteristics that are unlikely to be affected by

the high school the child attends. However, we also provide results from a “full” specification which includes

in Xi measures of student behavior, parental expectations, and student academic ability (standardized test

scores). Such measures may be influenced directly by school inputs, so including them could cause an

underestimate of the contribution of school-level inputs (our lower bound estimates will be too conservative).

On the other hand, excluding such measures could instead cause an overestimate of the contribution of

school-level inputs if this sparser set of student observables no longer satisfies the spanning condition stated

in Proposition 1. In this case there would exist differences in average unobservable student contributions to

outcomes across schools that are not predicted by the vector of school averages of observable characteristics.

Tables 10 - 13 list the final choices of individual-level and school-level explanatory measures used in each

dataset.

The one major drawback associated with the three panel surveys is that only around 20 students per

school are generally sampled. The simulation results presented in Section 4 suggest that samples of this size

can erode the ability of sample school averages of observable characteristics to serve as an effective control

function for variation in average unobservable student contributions across schools. Consequently, we also

exploit administrative data from North Carolina on the universe of public schools and public school students

(including charter schools) in the state. Since the North Carolina data contains information on every student

at each school, it does not suffer from the same small subsample problem as the panel surveys. Furthermore,

we can use the North Carolina we assess the potential for bias in our survey-based estimates more directly

by drawing samples of students from North Carolina schools using either the NLS72, NELS88, or ELS2002
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sampling schemes and re-estimate the model for high school graduation using these samples. By comparing

the results derived from such samples to the true results based on the universe of students in North Carolina,

we can determine which if any of the survey datasets is likely to produce reliable results. Appendix Table

9 reports the results of this exercise. It shows that using school sample sizes whose distributions match

the NLS72, NELS88, or ELS2002 distributions generates only relatively minor biases, generally increasing

ˆV ar(Z2sG2) and decreasing ˆV ar(Z2sG2 + vs) by less than ten percent of their full sample values.

The North Carolina data are also the most recent: data are collected for all 2004-2006 public school 9th

graders. On the other hand, the data we possess does not link student records to college attendance or future

wages, so that the only outcome we observe is high school graduation. The set of observable characteristics

is also not as diverse as in the panel surveys, though it is surprisingly rich for administrative data. In addition

to test scores from each grade 3-8, the NC data contain information on each student’s race and gender, the

student’s history of free lunch eligibility and limited english proficiency status, whether the student has

been deemed “gifted”, parental education, hours per week spent reading for leisure and watching TV. Table

13 provides a full list of the student- and school-level variables included in specifications using the North

Carolina data.

The outcome variables are defined as follows. COLL, the measure of college attendance, is an indicator

for whether the student is enrolled in a four year college in the second year beyond the high school graduation

year of his/her cohort. It is available in each dataset except the North Carolina data.30 The sample college

enrollment rate is 27 percent in NLS72, 31 percent in NELS88, and 37 percent in ELS2002. For NELS88

and ELS 2002 HSGRAD is an indicator for whether a student has a high school diploma (not including

a GED) as of two years after the high school graduation year of his/her cohort. For the North Carolina

data, HSGRAD indicates whether the student is classified as graduated for the official state reporting

requirement.10th grade, it misses a substantial fraction of the early dropouts. Indeed, in NELS88, about

one third of the 16 percent who eventually drop out do so before the first follow up survey in the middle of

10th grade. The North Carolina data considers students as eligible for official dropout statistics if they are

enrolled in a North Carolina school at the beginning of 9th grade, so there is little scope for underestimating

the incidence of dropout. Given that NLS72 first surveys students in 12th grade, we cannot properly examine
30However, in NLS72 enrollment status is reported in January-March of the second full school year after graduation, while in

NELS88 and ELS02 it is reported in October.
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dropout behavior in this dataset. However, because NLS72 re-surveys students in 1979 and 1986, when

respondents are around 25 and 32 years old, respectively, we can use it to analyze completed years of

postsecondary education and wages during adulthood. We use years of academic education as of 1979,

because attrition and subsampling reduced the 1986 sample by a considerable amount relative to the 1979

follow-up survey, and most respondents have completed their education as of 1979. For the wage analysis,

we include only respondents who report wages in both 1979 and 1986. The full variance decompositions

described in Section 6 are provided for each of our outcomes in Appendix Tables 14, 2, and 16

In each specification, we restrict our sample to those individuals whose school administrator filled out

a school survey, and who have non-missing information on the outcome variable and the following key

characteristics: race, gender, SES, test scores, region, and urban/rural status.31 We then impute values for

the other explanatory variables to preserve the sample size, since no one other variable is critical to our

analysis.32 Finally, each specification makes use of a set of panel weights. The appropriate weights depend

on the analysis. Our rationale for using weights and the details of how we construct them are provided in

Appendix Section 8

8 Results

8.1 High School Graduation

Panel A of Table 1 displays our lower bound estimates of the fraction of variance in the latent index

that determines high school graduation that can be directly attributed to school/neighborhood choices for

each dataset. The first row presents estimates that exclude V ar(vs) (labeled “no unobs”), while the second

row presents estimates that includes V ar(vs) (labeled “ w/ unobs”). However, recall that the motivation for

excluding vs is that it may reflect common shocks that occur after high school that may not be responsive to
31SES and Urban/rural status are not available in the North Carolina data.
32This results in sample sizes for the four year college enrollment analyses of: 12,100 for NLS72, 10,990 for NELS88 using

the grade 8 school, 10,710 for NELS88 using the grade 10 school, and 12,440 for ELS02. The sample sizes for the high school
graduation analyses are 11,340 for NELS88 (using grade 8 school), 11,040 for NELS88 (using grade 10 school) and 12,370 for
ELS02, respectively. The analysis of years of postsecondary education uses 12,070 observations from NLS72, and the wage
analysis uses 4,930 individuals with 9,860 wage observations. We also create a missing indicator for mother’s education, and
include mother’s education combined with the missing indicator when performing imputation, along with school averages of all the
key characteristics above.
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any changes in school or neighborhood policies. Since graduation is not really a post-secondary outcome, vs

is likely to contain only school and neighborhood contributions that are orthogonal to the observed school-

level measures Z2 (or sorting bias if the spanning condition from Proposition 1 fails). Thus, for high school

graduation we focus on the results that contain vs. The first column displays the results from the baseline

specification using the North Carolina data: our lower bound estimate is that at least 4.9 percent of the

total student-level variance can be attributed exclusively to school system and neighborhood contributions.

Since the set of observed individual-level measures Xi is somewhat sparse in the North Carolina data, it

is possible that our control function of school-averages Xs does not span the full amenity space, so that

unobservable sorting bias may contribute to this estimate. Thus, the second column displays results from

the full specification that augments Xi by adding past test scores and measures of behavior. Since these

measures could potentially have been altered by the school, including them removes some true school system

contributions, but also makes the spanning condition in Proposition 1 more plausible. The estimated lower

bound from 4.9 percent to 3.6 percent of the latent index variance.

Comparing the North Carolina results to those of NELS88 (Columns 3 and 4) and ELS2002 (Columns

5 and 6), a couple of noteworthy patterns emerge. First, across both specifications and both lower bound esti-

mates, NELS88 features smaller fractions of outcome variance unambiguously attributable to schools/neighborhoods

than either NC or ELS2002 (∼ 1% relative to ∼ 2-3%). One possible explanation for this finding is that

NELS88 school-level observables (Z2) reflect the 8th grade school environment while the corresponding

measures in the other two datasets reflect the high school environment. It could be that the nature of the high

school environment is particularly critical to dropout prevention. Second, comparing Row 2 across columns,

we see that the North Carolina administrative data features the largest gap between the lower bound esti-

mates that include versus exclude the school level residual, vs, while the gap is negligible for ELS2002. This

is not surprising; the North Carolina data has the sparsest set of school-level observables, which leads to a

small V ar(Z2G2) relative to vs, since less true variation in school quality is captured by observables. North

Carolina also has the sparsest set of student-level observables (even in the full specification), which may

cause vs to contain some between school variation in student unobservables XU
s β

U that is unabsorbed by

the control function (the spanning condition in Proposition 1 fails). By contrast, ELS2002 has the richest set

of both student-level and school-level observables, so that there is very little residual school-level variation

that cannot be captured by either the control function Xs or the school-level observables Z2s.
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The small fractions of variance attributed to schools in Panel A are consistent with the considerable

literature emphasizing the importance of student talent, parental inputs, and even luck relative to school and

neighborhood inputs in determining who completes high school. However, to get a more intuitive sense

of the difference that an effective school system and neighborhood can make, in Panel B we use these two

alternative lower bound variance estimates to form estimates of the average impact on the probability of

graduation across the distribution of student contributions of moving from a school at the 10th percentile of

the distribution of school/neighborhood contributions to a school at the 90th percentile. We can think of this

as a thought experiment in which two students at each quantile in the student contribution distribution are

placed either in the 10th or the 90th quantile school system, and the difference in the graduation status of

these two pairs is summed over all such pairs.

The most striking feature of the results is the large magnitude of the estimated changes in graduation

rates. For North Carolina, the estimate from the baseline specification suggests that, averaged across the

student distribution, attending a 90th quantile school increases graduation rates by a whopping 17.4 per-

centage points relative to a school at the 10th quantile (from 67.6% to 85.0%) The corresponding estimates

for 9.8 percentage points for NELS88 (80.7% to 90.5%) and 8.3 percentage points for ELS2002 (86.0% to

94.3%). Even the more conservative estimates from the full specification, which likely removes mostly true

school/neighborhood contributions, suggest increases in graduation rates from a 10th-to-90th quantile shift

of 15.2, 7.5 and 7.0 percentage points in NC, NELS88, and ELS2002, respectively. Notice further that these

estimates are quite large despite the fact that the fractions of variance upon which they are based is quite

small: 3.6, 1.6, and 2.5 percent for NC, NELS88 and ELS2002. One reason for this seeming disconnect is

that squaring of deviations to produce variances will naturally mute moderate differences in school contribu-

tions relative to the standard deviations on which the 10-90 shifts are based. A second reason may be related

to our reliance on the probit function and the assumption of normality. If the true distribution of latent

student contributions is normal, and the graduation rate is not too high, then there is likely to be large mass

of students near the decision margin. Thus, even a small push from the surrounding school/neighborhood

environment may be enough to induce a significant fraction of students to graduate.

Second, notice that even though the estimated lower bound fractions of variance were smaller for

NELS88 than for ELS2002 in Panel A, the 10th-90th impact estimates displayed in Panel B are larger

for NC. This is due to differences in the sample average graduation rates across the datasets. The graduation
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rate is 76 percent in the North Carolina data, 86 percent in NELS88, and 90 percent in ELS2002. As a result,

a shift of the same magnitude will induce a greater increase in NELS88 than in ELS2002 (and an even larger

shift in NC), because there seem to be fewer students near the decision margin. Intuitively, as the sample av-

erage converges to 100 percent graduation, the variation in the latent index determining the personal relative

benefit from graduating becomes less relevant, as the entire population is far from the decision threshold at

0.

Given that our control function removes all variation in the amenities that families knew about or valued

at the time of choice (assuming the conditions of Proposition 1 are satisfied or nearly satisfied), the large

lower bound estimates suggest that school systems and neighborhoods have a considerable role to play in

determining which students graduate high school.

8.2 Enrollment in a Four Year College

Panel A of Table 2 presents results for the decomposition of the latent index determining enrollment in

a 4-year college. Comparing the baseline specifications from NLS72, NELS88, and ELS2002 (Columns 1,

3, and 5), we observe a surprising consistency in both lower bound estimates of the school/neighborhood

contribution across datasets and generations. Estimates that exclude the between-school residual vs attribute

at least 1.8 to 2.6 percent of outcome variance to schools/neighborhoods, while estimates that include vs

attribute 3.8 to 4.6 percent. Including test scores and behavioral variables (for NELS88 and ELS2002)

reduces these lower bound estimates in a consistent fashion across the three panel surveys (Columns 2, 4,

and 6), with the estimates that exclude the residual vs dropping to 1.5 to 1.9 percent, and the estimates that

include the residual vs dropping to 2.9 to 3.2 percent.

Panel B of Table 2 converts these variance fractions into the more easily interpreted average impacts

of a 10th-to-90th quantile shift in school/neighborhood environment. Recall that the sample average col-

lege enrollment rate is 27 percent in NLS72, 31 percent in NELS88, and 37 percent in ELS2002. Since

more of the students are not close to the college attendance threshold in 1972, fewer of them reach the

decision margin for a given shift in school/neighborhood environment, relative to the cohorts from later

generations. Despite these differences in baseline enrollment rates, the estimated lower bounds on the in-

crease in the 4-year enrollment rate from moving every student (one at a time) from the 10th to the 90th

33



quantile school/neighborhood are fairly consistent across generations. When the residual component vs is

excluded and the full specification is considered, the estimates for each dataset are between 11 and 13 per-

centage points (Row 1, Columns 2, 4, and 6 of Panel B). Specifically, a 10th to 90th quantile shift in the

school/neighborhood component Z2sG2 increases enrollment rates from 21.0% to 32.9% in NLS72, from

26.1% to 37.3% in NELS88, and from 30.2% to 43.4% in ELS2002. Including the residual between-school

component boosts the range of estimates to 15 to 17 percentage points. Even 10th-to-50th quantile shifts

still produce average estimated impacts between 5 and 8 percentage points.

As with the estimates for high school graduation, the estimates in Table 2 suggest that schools and

neighborhoods also play an important role in determining who enrolls in a four-year college.

8.3 Heterogeneous Effects of 10th-90th Percentile Shifts in School Quality

The estimates reported in Panel B of Tables 1 and 2 are based on starting the full distribution of students

at a 10th quantile school and moving them to a 90th quantile school. However, many of the students

with superior background characteristics would be quite unlikely to ever be observed in a 10th quantile

environment. A more realistic estimate might put greater weight on estimates produced for the kinds of

students most likely to be observed in 10th quantile schools. While our method does not allow us to discern

the quality of any given school, we can nonetheless explore the extent to which the estimates in Tables 1 and

2 conceal heterogeneity in the impact of moving schools across students with varying student backgrounds.

Because of nonlinearity in the probit function that links Yi to the binary outcome indicators for high school

graduation and enrollment in a 4-year college, the sensitivity to school quality is higher for groups with

values of Xs,iB̂ that place them closer to a probability of .5. High school graduation is therefore more

sensitive to school quality for disadvantaged groups and less sensitive for advantaged groups. The opposite

tends to be true for enrollment in a four-year college.

Table 3 reports the lower bounds (excluding and including the school-level residual vs) for the effect of

a 10th to 90th percentile shift in school quality on graduation rates for two extreme cases: students whose

value of the background index XiB̂ places them at the 10th quantile of the XiB̂ distribution (Rows 1 and

2), and students at the 90th quantile of the XiB̂ distribution (Rows 3 and 4). For the North Carolina sample

and the full specification (Column 2), the lower bound estimates that include the between-school residual
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component vs suggest a 22.9 percentage point increase for students at the 10th quantile (43.2% to 66.1%)

and a 6.3 percentage point increase for students at the 90th quantile (90.8% to 96.2%), respectively. For

NELS88 grade 8 (Column 4), the numbers are smaller, particularly for the 90th quantile: lower bound

estimates that include vs are 15.9 percentage points (55.5 to 71.4) and 0.6 percentage points (99.0% to

99.7%). This partly reflects the fact that the average dropout rate is lower for the NELS88 than for the state

of North Carolina between 2007 and 2009. ELS2002 results are quite similar to those from NELS88. The

results suggest that advantaged students tend to graduate high school regardless of the school they attend,

while disadvantaged students are strongly affected by school quality.

Table 3 also reports the average impact of a 10th-90th shift on high school graduation rates for three sub-

populations of interest: black students, white students with single mothers who did not attend college, and

white students with both parents present, at least one of whom completed college. For the full specification

in the North Carolina sample, the shift increases the predicted graduation rate among black students from

68.4% to 83.6% (a net gain of 15.2 percentage points). The corresponding increase for white students with

single mothers who did not attend college is 20.6 percentage points (69.2% to 84.3%), while the increase for

white students with both parents, at least one of whom completed college, is 8.4 percentage points (86.3%

to 94.6%). The estimated increases in graduation rates are consistently smaller in the NELS88 and ELS

samples, but are still between 5 and 12 percentage points for black students and for white students with

single mothers who did not attend college.

Table 4 reports a corresponding set of results for enrollment in a 4-year college. The college enrollment

rates for students at the 10th percentile of the XiB̂ distribution are substantially less sensitive to school

quality, reflecting the fact that most such students are nowhere near the four year college enrollment margin.

For example, the ELS2002 estimate from the full specification suggests that a 10th-90th shift in the school

system/neighborhood component V ar(Z2sG2 +vs would increase the four year enrollment rates of students

at the 10th percentile ofXiB̂ by 6.4 percentage points (from 2.1% to 8.6%). More generally, the lower bound

estimates that exclude and include the residual vs are between 2.7 and 5.0 percentage points and between 3.4

and 6.4 percentage points, respectively, depending on the dataset and specification. By contrast, for students

at the 90th percentile of XiB̂ the ELS2002 estimate from the full specification suggests that a 10th-90th

shift in the school system/neighborhood component V ar(Z2sG2 + vs would increase enrollment rates at

four year colleges by 16.7 percentage points (from 72.8% to 89.6%). The lower bound estimates excluding
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and including common shocks for students at the 90th percentile of theXiB̂ distribution are between 13 and

18 percentage points and 17 and 23 percentage points, respectively. The values for blacks and for whites

with non-college-educated single mothers are similar to the results for the full sample, while the values for

whites with college educated parents are close to those for the 90th percentile of the XiB̂ distribution.

Overall, it appears that, except for the lowest stratum of student background, there are considerable pools

of students that are close enough to the decision margin for a major shift in school quality to be a deciding

factor in determining enrollment in a four year college.

8.4 NLS Results for Years of Postsecondary Education and Permanent Log Wages

Table 5 displays the lower bound estimates of the impact of 10th-to-90th and 10th-to-50th shifts in school

quality on years of postsecondary education and permanent wages for the NLS72 sample. The baseline

lower bound estimate that excludes the between-school residual vs implies that a 10-90 shift in school

quality increases years of postsecondary education by .58 years, while including standardized tests among

the observable characteristics reduces this estimate to .44 years. Note, though, that since the NLS72 data

is collected in 12th grade, the standardized test scores are particularly likely to reflect high school quality,

making the full specification a likely underestimate. Adding the variance in the unexplained between-school

component raises these estimates to .66 and .52 years respectively. 10th-to-50th quantile shifts are half as

large by construction, since no non-linear transformation takes place when the outcome is continuous (the

“latent” index is perfectly revealed). Collectively, the estimates suggest a substantive impact of shifts in

school quality on years of college education.

Columns 3-6 contain analogous estimates for the permanent component of log wages. Columns 3-4

reflect specifications in which years of postsecondary education is not included as a control, while columns

5-6 include years of postsecondary education to focus on the effect on log wages that does not occur via

postsecondary education. In practice, the two sets of estimates are quite similar. The estimates that exclude

the residual vs imply that a 10-90 shift in school quality increases wages by around 17 percent. The 10-50

shifts are again half as large at around 8.5 percent. Estimates that include vs imply that a 10-90 shift in school

quality increases wages by around 19 percent. Thus, at least for the 1972 cohort, shifts in school quality

also seem to have important impacts for longer run outcomes of prime importance for worker welfare.
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9 Other Applications

The control function approach applies to other situations in which selective sorting into units makes

identification of the independent effect of the units difficult. Measurement of teacher quality is a particularly

important application given the widespread use of teacher value added models to aid in the evaluation of

teachers. It is also an example of a set of problems in which sorting into groups (classrooms in this case) is

mediated by an administrator rather than the result of individual choices.

Most of the analysis in Section 2 can be adapted easily to the administrator choice context. For example,

suppose that the school principal has already decided which teachers to allocate to which courses for which

periods of the day. A classroom c can also be characterized by a vector of amenity values Ac. The amenities

might include the principal’s perceptions of various teacher attributes or skills as well as other amenities

such as whether the heating system works and the difficulty level of the class. The Θ and ΘU matrices

that relate preferences for different elements of Ac to Xi and XU
i will now reflect a principal’s belief about

which types of students are most likely to benefit from a better teacher, the difficulty level, etc. They might

also reflect a desire to placate parents or students, where students/parents with certain values of Xi or XU
i

are more likely to advocate for particular classroom assignments.

When the amenity vector Ac is taken to be exogenous to the principal’s choice (i.e. independent of

classroom composition), the solution to the classroom allocation problem aligns with that of a competitive

equilibrium. In Appendix Section 9, we show that in this case the unobserved classroom averages XU
c will

be a linear function of the observed averages Xc under assumptions analogous to those in Proposition 1.

Exogeneity of the amenity vector may be reasonable in some high school and college contexts in which

students submit course preferences and a schedule-making algorithm assigns students to classrooms.

However, in the elementary and middle school contexts, it seems likely that some elements of Ac could

reflect the student makeup of the class. In such contexts the classroom sorting problem diverges from the

school/neighborhood sorting problem in two important respects. First, the principal may care directly about

inequality across classes in average student characteristics. Second, the principal would internalize the

effect that allocating a student to a classroom c has on the classroom’s composition-dependent amenities

Ac, whereas parents take the school amenities As as given. We have not yet solved a planning problem
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featuring endogenous amenities.

Nevertheless, our analysis of the exogenous amenities case does suggest that the common practice of

including classroom averages of student characteristics (such as in Chetty et al. (2014)) may play a poten-

tially powerful role in purging value-added estimates of biases stemming from non-random student sorting

on unobservables and observables. Furthermore, as we note in the Appendix, it may also reduce omitted

variables bias from non-random assignment of teachers to other unobserved outcome-relevant classroom

environmental factors. While there are many caveats to our analysis, it may partially explain the otherwise

surprising finding that non-experimental OLS estimators of teacher quality produce nearly unbiased esti-

mates of true teacher quality as ascertained by quasi-experimental and experimental estimates (Chetty et al.

(2014), Kane and Staiger (2008)).

We also mentioned the evaluation of hospitals and hospital inputs in the introduction. Recent work by

Fletcher et al. (2014) uses patient data matched to physicians to estimate the effects of physician effects

on health outcomes. It controls for very detailed patient characteristics but not for the physician specific

averages of patient characteristics. Our analysis suggests that adding these would allay concerns about

sorting on patient unobservables.

Finally, a very different type of application of our approach relates to government regulation. The

standard textbook treatment of occupational safety regulation (e.g. Ehrenberg and Smith (2010)) suggests

that government intervention only increases worker welfare if the safety risks are unknown at the time the

occupation is chosen. Otherwise such regulations remove the opportunity for risk-loving workers to get

paid welfare-enhancing compensating differentials for taking on risky jobs. The sorting model we pre-

sented suggests that the residual from a regression of occupation-average age at death on a large vector of

occupation-average worker characteristics can potentially isolate the part of the long run occupational con-

tribution to health that was unknown to workers when they chose the occupation. It addresses the concern

that occupational sorting on unobserved characteristics that influence mortality is responsible for differences

in mortality rates across occupations. Thus, one can directly identify the occupations that merit government-

supported information campaigns or other safety regulations.
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10 Concluding Remarks

The key takeaway from the empirical analysis is that even conservative estimates of the contribution

of schools and surrounding neighborhoods to later outcomes suggest that improving school/neighborhood

environments could have a large impact on high school graduation rates and college enrollment rates. As

we noted in the introduction, prior evidence on this topic is mixed, in part because prior research showing

substantial using across-school and across-neighborhood variation in outcomes is subject to concerns about

sorting on unobservables that we address in this paper. Our results are quite consistent with the lottery-based

estimates of Deming et al. (2014). They suggest that their results might generalize beyond the specific high

poverty Charlotte context they consider. Much more speculatively, their results, perhaps combined with the

Moving to Opportunity results, suggest that schools may constitute a more important part of the contribution

of the external environment than do neighborhoods, though the two may be complementary.

There is a long research agenda. On the empirical side, we have discussed a number of other applications

for our approach to distinguishing true group effects from sorting. On the theoretical side, there are clearly

extensions to our framework that are likely to produce a more nuanced interpretation. In particular, our

model of outcomes does not explicitly allow for complementarities and other interactions between school

and student quality.33 For example, it could be the case that the types of students who attend low quality

schools are those who are most likely to profit from improvements in school quality. Additional monte carlo

analysis is needed to better understand the conditions under which the approach works well in delivering a

lower bound. We are currently extending the theoretical analysis around Proposition 1 to the case when the

number of choices is discrete rather than continuous, although the simulations reported in the paper make

clear that the control function approach works well in that case. We view the central message of our paper

to be that in many circumstances aspects of the distribution of the observed group characteristics are likely

to be a useful control for unobserved group characteristics, not that the relationship between the observed

and unobserved characteristics is necessarily linear.
33Recall, though, that our model does allow for school treatments to differ across students within a school. Furthermore, the

preference weights on amenities that represent school characteristics are permitted to be heterogeneous, as would be the case
if parents choose locations the match to their child’s needs in mind. This variation is not captured, however, in our lower bound
estimates, which focus only on correctly attributing across-school variation to schools/neighborhoods quality versus student quality.
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11 Tables and Figures

Table 1: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to High
School Graduation Decisions

Panel A: Fraction of Latent Index Variance Determining Graduation
Attributable to School/Neighborhood Quality

Lower Bound NC NELS gr8 ELS

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.018 0.013 0.011 0.006 0.025 0.024
V ar(Z2sG2) (0.008) (0.004) (0.006) (0.004) (0.012) (0.011)

LB w/ unobs 0.049 0.036 0.028 0.016 0.036 0.025
V ar(Z2sG2 + vs) (0.014) (0.008) (0.009) (0.005) (0.012) (0.011)

Panel B: Effect on Graduation Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Upper/Lower Bound NC NELS gr8 ELS

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.106 0.084 0.061 0.047 0.070 0.068
Based on V ar(Z2sG2) (0.022) (0.014) (0.014) (0.012) (0.013) (0.012)

LB w/ unobs: 10th-90th 0.174 0.152 0.098 0.075 0.083 0.070
Based on V ar(Z2sG2 + vs) (0.026) (0.017) (0.017) (0.013) (0.013) (0.013)

LB no unobs: 10th-50th 0.056 0.044 0.033 0.025 0.040 0.038
Based on V ar(Z2sG2) (0.013) (0.008) (0.008) (0.007) (0.009) (0.008)

LB w/ unobs: 10th-50th 0.096 0.083 0.055 0.041 0.048 0.039
Based on V ar(Z2sG2 + vs) (0.016) (0.010) (0.010) (0.008) (0.009) (0.008)
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Table 2: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to Four Year
College Enrollment Decisions

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS NELS gr8 ELS

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.026 0.019 0.018 0.015 0.022 0.018
V ar(Z2sG2) (0.005) (0.004) (0.006) (0.005) (0.007) (0.006)

LB w/ unobs 0.038 0.032 0.040 0.029 0.046 0.031
V ar(Z2sG2 + vs) (0.007) (0.006) (0.008) (0.006) (0.009) (0.007)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Upper/Lower Bound NLS NELS gr8 ELS

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.139 0.118 0.127 0.112 0.155 0.132
Based on V ar(Z2sG2) (0.013) (0.012) (0.018) (0.017) (0.019) (0.017)

LB w/ unobs: 10th-90th 0.170 0.152 0.188 0.155 0.216 0.172
Based on V ar(Z2sG2 + vs) (0.017) (0.016) (0.020) (0.018) (0.021) (0.020)

LB no unobs: 10th-50th 0.065 0.056 0.061 0.054 0.075 0.064
Based on V ar(Z2sG2) (0.006) (0.005) (0.008) (0.008) (0.008) (0.008)

LB w/ unobs: 10th-50th 0.078 0.071 0.088 0.073 0.103 0.083
Based on V ar(Z2sG2 + vs) (0.007) (0.007) (0.009) (0.008) (0.009) (0.009)
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Table 3: The Impact of 10th-90th Percentile Shifts in School Quality on High School Graduation Rates for
Selected Subpopulations

NC NELS gr8 ELS

Subpopulation Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

XB: 10th Quantile
LB no unobs 0.146 0.127 0.110 0.099 0.123 0.140

Based on V ar(Z2sG2) (0.030) (0.020) (0.026) (0.024) (0.023) (0.025)

LB w/ unobs 0.242 0.229 0.176 0.159 0.146 0.144
Based on V ar(Z2sG2 + vs) (0.035) (0.024) (0.031) (0.027) (0.024) (0.025)

XB: 90th Quantile
LB no unobs 0.060 0.036 0.016 0.004 0.019 0.010

Based on V ar(Z2sG2) (0.013) (0.006) (0.004) (0.001) (0.004) (0.002)

LB w/ unobs 0.098 0.063 0.026 0.006 0.022 0.010
Based on V ar(Z2sG2 + vs) (0.016) (0.008) (0.005) (0.001) (0.004) (0.002)

Black
LB no unobs 0.107 0.085 0.061 0.053 0.079 0.082

Based on V ar(Z2sG2) (0.022) (0.014) (0.015) (0.015) (0.015) (0.014)

LB w/ unobs 0.176 0.152 0.098 0.084 0.094 0.084
Based on V ar(Z2sG2 + vs) (0.026) (0.017) (0.018) (0.017) (0.015) (0.014)

White w/ Single Mother
Who Did Not Attend College

LB no unobs 0.142 0.114 0.099 0.078 0.101 0.096
Based on V ar(Z2sG2) (0.029) (0.019) (0.023) (0.019) (0.021) (0.020)

LB w/ unobs 0.235 0.206 0.159 0.125 0.120 0.099
Based on V ar(Z2sG2 + vs) (0.034) (0.022) (0.028) (0.021) (0.022) (0.020)

White w/ Both Parents,
At Least One Completed College

LB no unobs 0.062 0.047 0.025 0.016 0.032 0.016
Based on V ar(Z2sG2) (0.014) (0.008) (0.007) (0.004) (0.007) (0.005)

LB w/ unobs 0.102 0.084 0.040 0.025 0.037 0.016
Based on V ar(Z2sG2 + ZUs ) (0.016) (0.010) (0.007) (0.005) (0.007) (0.005)

NELS gr8 refers to a decomposition that uses the 8th grade school as the class variable, and uses 8th
grade measures of student behavior and parental expectations, and 8th grade test scores in the full
specification.
“Lower Bound w/unobs” and “Lower Bound no unobs” refer to lower bound estimates of the increase
in the probability of graduation associated with a move from the 10th percentile school to the 90th
percentile school, independent of differences in student composition, that exclude and include common
shocks to all members of a school that take place after high school begins, respectively.
XB: 10th (90th) Quantile reports results for students whose values of XsiB equal the estimated 10th
(90th) quantile value of the XsiB distribution. See Section 6.
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Table 4: The Impact of 10th-90th Percentile Shifts in School Quality on Four-Year College Enrollment
Rates for Selected Subpopulations

NLS NELS gr8 ELS

Subpopulation Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

XB: 10th Quantile
LB no unobs 0.078 0.027 0.064 0.032 0.100 0.050

Based on V ar(Z2sG2) (0.008) (0.004) (0.010) (0.005) (0.013) (0.007)

LB w/ unobs 0.094 0.034 0.093 0.046 0.138 0.064
Based on V ar(Z2sG2 + vs) (0.010) (0.005) (0.011) (0.006) (0.015) (0.008)

XB: 90th Quantile
LB no unobs 0.191 0.182 0.160 0.128 0.166 0.128

Based on V ar(Z2sG2) (0.017) (0.017) (0.023) (0.022) (0.021) (0.017)

LB w/ unobs 0.234 0.234 0.236 0.187 0.231 0.167
Based on V ar(Z2sG2 + vs) (0.023) (0.024) (0.025) (0.022) (0.023) (0.017)

Black
LB no unobs 0.132 0.109 0.125 0.111 0.145 0.121

Based on V ar(Z2sG2) (0.013) (0.012) (0.017) (0.016) (0.018) (0.016)

LB w/ unobs 0.161 0.140 0.184 0.152 0.201 0.158
Based on V ar(Z2sG2 + vs) (0.017) (0.016) (0.019) (0.017) (0.020) (0.018)

White w/ Single Mother
Who Did Not Attend College

LB no unobs 0.110 0.099 0.091 0.074 0.140 0.124
Based on V ar(Z2sG2) (0.012) (0.011) (0.014) (0.012) (0.018) (0.016)

LB w/ unobs 0.134 0.127 0.132 0.102 0.195 0.162
Based on V ar(Z2sG2 + vs) (0.014) (0.013) (0.016) (0.013) (0.020) (0.019)

White w/ Both Parents,
At Least One Completed College

LB no unobs 0.180 0.158 0.157 0.139 0.173 0.148
Based on V ar(Z2sG2) (0.016) (0.015) (0.022) (0.021) (0.021) (0.020)

LB w/ unobs 0.220 0.204 0.232 0.192 0.242 0.193
Based on V ar(Z2sG2 + ZUs ) (0.022) (0.021) (0.024) (0.022) (0.023) (0.023)

Notes: See Table 8
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Table 5: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to Completed
Years of Postsecondary Education and Permanent Wages (NLS72 data)

Panel A: Fraction of Variance
Attributable to School/Neighborhood Quality

Lower Bound Yrs. Postsec. Ed.
Perm. Wages Perm. Wages

No Post-sec Ed. w/ Post-sec Ed.

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.026 0.019 0.018 0.015 0.022 0.018
V ar(Z2sG2) (0.002) (0.002) (0.010) (0.010) (0.011) (0.011)

LB w/ unobs 0.038 0.032 0.040 0.029 0.046 0.031
V ar(Z2sG2 + vs) (0.004) (0.002) (0.013) (0.016) (0.021) (0.021)

Panel B: Effects on Years of Postsecondary Education and Permanent Wages
of a School System/Neighborhood at the 50th or 90th Percentile

of the Quality Distribution vs. the 10th Percentile

Lower Bound Yrs. Postsec. Ed.
Perm. Wages Perm. Wages

No Post-sec Ed. w/ Post-sec Ed.

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.578 0.445 0.152 0.157 0.155 0.157
Based on V ar(Z2sG2) (0.054) (0.039) (0.019) (0.019) (0.020) (0.020)

LB w/unobs: 10th-90th 0.661 0.520 0.177 0.177 0.175 0.173
Based on V ar(Z2sG2 + vs) (0.069) (0.047) (0.028) (0.023) (0.031) (0.031)

LB no unobs: 10th-50th 0.283 0.222 0.076 0.079 0.077 0.078
Based on V ar(Z2sG2) (0.027) (0.019) (0.010) (0.010) (0.010) (0.010)

LB w/unobs: 10th-50th 0.331 0.260 0.088 0.088 0.087 0.087
Based on V ar(Z2sG2 + vs) (0.035) (0.024) (0.014) (0.012) (0.016) (0.016)

Full specification includes student ability measures.
No Post-sec Ed. refers to specifications in which we do not include years of
completed post-secondary education as an element of Xsi.
w/ Post-sec Ed. refers to specifications in which we include years of completed
post-secondary education as an element of Xsi.
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Appendix

1 Spanning Condition Examples

Consider first a scenario in which there are two observed student characteristics X ≡ [X1, X2], two

outcome-relevant unobserved student characteristicsXU = [XU
1 , X

U
2 ], and two school/neighborhood amenity

factors, A = [A1, A2].

Case 1: rank(ΘU) ≤ rank(Θ) = dim(A)

Suppose that the matrices capturing the impact of observed unobserved student characteristics on parent

willingness-to-pay for amenities Θ and ΘU are each full rank. For example:

Θ =

 1 1

0 1

 ΘU =

 1 2

2 1


Then we can write ΘU = RΘ, where

R =

 1 1

2 −1


Thus, the spanning condition is satisfied in this case. If ΘU were rank-deficient, then the spanning condition

would still be satisfied, but R would be rank-deficient.

Now suppose that there are instead three outcome-relevant unobserved characteristics: XU = [XU
1 , X

U
2 , X

U
3 ],

each of which affects willingness-to-pay for the two amenities differentially. Suppose that X and Θ are un-

changed from Case 1:

Θ =

 1 1

0 1

 ΘU =


1 2

2 1

1 1


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Then we can write ΘU = RΘ, where

R =


1 1

2 −1

1 0


Thus, the spanning condition is satisfied in this case. We see that dim(X) can be less than dim(XU ) without

violating the spanning condition, as long as the row rank of Θ is at least as large as the row rank of ΘU . Any

scenario satisfying rank(ΘU ) ≤ rank(Θ) = dim(A) will satisfy the spanning condition in Proposition 1.

Case 2: rank(Θ) < rank(ΘU) ≤ dim(A)

Suppose instead that neither X1 nor X2 predicts willingness to pay for A2:

Θ =

 1 0

2 0

 ΘU =

 1 2

2 1


Since Θ is now rank-deficient, there is no matrixR such thatRΘ = ΘU . In particular, for any matrixR, each

entry in column 2 will always be zero, but the second column of ΘU contains non-zero entries. Similarly, if

both X1 and X2 affect willingness-to-pay for A1 and A2 in the same proportion, a rank-deficiency will also

occur:

Θ =

 1 2

2 4

 .

Here, an incremental unit ofX1 orX2 will affect willingness-to-pay forA2 by twice as much as it will affect

willingness-to-pay for A1. As in the previous example, there is no matrix R such that RΘ = ΘU . For any

choice of R, in each row of RΘ the second column will always be twice as large as the first column, but the

second row of ΘU has a first column entry that is only half as large as its second column entry. Both these

examples violate the spanning condition. If the row rank of Θ is less than the row rank of ΘU , then the row

space of ΘU cannot possibly be a subspace of the row space of Θ.
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Case 3: rank(ΘU) ≤ rank(Θ) < dim(A)

Suppose now that both X and XU are scalars: X ≡ X1, XU ≡ XU
1 . Consider first the case where X1

only predicts willingness-to-pay for A1, while XU
1 only predicts willingness-to-pay for A2:

Θ =

{
1 0

}
ΘU =

 0 1


Regardless of the 1x1 scalar R, the product RΘ will have a zero in the second column, which does not

match ΘU . Despite the fact that rank(Θ) = rank(ΘU ) = 1, the spanning condition fails because the row

space of ΘU is not a subspace of the row space of Θ.

Indeed, suppose that we alter Θ and ΘU so that both X1 and XU
1 affect willingness to pay for both

amenities (but in different proportions):

Θ =

{
1 1

}
ΘU =

{
2 4

}

There is no scalar R such that RΘ = ΘU , since any value of R will preserve the one-to-one ratio between

the first and second entries in Θ, while ΘU has a one-to-two ratio between its first and second entries. The

spanning condition also fails in this case because the row space of ΘU is not a subspace of the row space

of Θ. This example demonstrates that if the set of factors that individuals consider when choosing groups

is large, one will generally need an equally large set of observable characteristics in order to satisfy the

spanning condition in Proposition 1.

Finally, suppose that both X1 and XU
1 only affect willingness to pay for A1 (κ may affect taste for A2,

so that A2 is still relevant for school choice):

Θ =

{
1 0

}
ΘU =

{
2 0

}

Then for R = 2, RΘ = ΘU , and the spanning condition is satisfied. Note that the row space of Θ is a

subspace of the row space of ΘU , despite the fact that both Θ and ΘU are rank deficient. This last exam-

ple illustrates that the observed characteristics need not predict willingness-to-pay for all choice-relevant
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amenities as long as the rows of Θ span the same (or a superspace) of the amenity subspace spanned by the

rows of ΘU .

2 Testing Proposition 1: Does Xs Span the Amenity Space?

As discussed in Section 3.1.2, one of the key necessary conditions for Proposition 1 to hold is that the

vector of observables Xi captures enough independent factors determining families’ preferences over group

amenities that it can span the space of amenities for which these observables affect tastes (denoted AXs ).

Under the particular linear specification of utility featured in 2, this condition is tantamount to requiring that

rank(δ) ≥ dim(AXs ).

Note that equation 11 implies that Xs can be written as a linear combination of the gradient of equilib-

rium neighborhood prices with respect to amenities: Xs = ∇P (As(i))∗Ω, where Ω = V ar(γi)
−1δ̃

′
V ar(Xi).

If the condition rank(δ) ≥ dim(AXs ) is strictly satisfied, then the LO elements of Xs are all linear com-

binations of a smaller g number of price gradient components. But this implies that Cov(Xs) will be rank

deficient, with rank(Cov(Xs)) = dim(AXs ). This is a testable prediction.

More generally, suppose Proposition 1 is nearly satisfied, so that small number of amenity factors drive

the vast majority of the variation in Xs, but there are several other amenities for which elements of Xi

slightly influence taste. Our simulations in section 4 suggest that such minor departures from the necessary

conditions laid out in Proposition 1 have very little impact on the ability of Xs effectively control for the

unobservable between-school variation XU
s . In such contexts, a small number of amenity factors should

account for a very large fraction of the variation in Xs, with only a very small amount of unexplained

residual variation.

We test these predictions by performing principal components analysis (PCA) on Xs. Because the

sample school averages of observable characteristics Xs are noisy measures of the expected values Xs ≡

E[Xi|s(i) = s, we do not fit the PCA model to Xs directly. Instead, we estimate the underlying true

covariance matrix Cov(Xs)
34, and then directly perform the principal components analysis on the estimated

34Specifically, we estimate ˆCov(Xi) and ˆCov(Xi − Xs) by taking the sample (weighted) covariances of Xi and Xi − X̂s,
performing the requisite degrees-of-freedom adjustment, and then obtaining ˆCov(Xs) via ˆCov(Xs) = ˆCov(Xi)− ˆCov(Xi−Xs).
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covariance matrix.

In Appendix Table 6 we present the results of this exercise. Panel A provides, for each dataset we use,

the number of principal components necessary to explain 75%, 90%, 95%, 99%, and 100% of the sum of the

variances of the standardized values of the LO characteristics in Xs (
∑LO

l V ar(Xsl), respectively. This is

the standard output from a factor analysis. In Panel B, we also provide the number of principal components

necessary to explain 75%, 90%, 95%, 99%, and 100% of the variance in XsĜ1, the regression index formed

by using the estimated coefficients on school-level averages from our empirical analysis.

Both Panel A and Panel B provide strong evidence that rank(δ) ≥ dim(AXs ), implying that the first

necessary condition for the spanning condition δ̃ = RδU in Proposition 1 is satisfied in the datasets we use.

Specifically, in each dataset, Cov(Xs) is found to be rank deficient. For example, in the full specification

using ELS2002, only 33 latent factors are needed to explain all of the variance in Xs (Panel A, Row 6,

Column 6), compared to LO = 51 elements of Xs. Similarly, in the NELS88 full specification, only 32

factors fully explain the variance in the 49 factors of Xs.

Furthermore, the PCA analysis also suggests that a much smaller number of factors can account for the

vast majority of the variation in either
∑LO

l V ar(Xsl or V ar(XsĜ1). In the ELS2002 full specification,

only 19 and 11 factors are needed to explain 95% of the variation in
∑LO

l V ar(Xsl and V ar(XsĜ1),

respectively (Panels A and B, Row 4, Column 6). For NELS88, only 20 and 13 factors are needed to explain

95% of the variation in the corresponding two measures (Panels A and B, Row 4, Column 4).

Note, though, that our principal components analysis does not inform us about the second necessary

condition for Xs to effectively control for XU
s : for each component of XU

i , either there must exist an

element of the observed vector Xi that is correlated with with this unobservable, or the set of amenities for

which it shifts preferences must also be a subset of the amenities for which elements of Xi shift preferences

(AX
U

s ⊂ AXs ). As mentioned in Section 3.1.2, we believe that the richness and size of the set of observables

used in our datasets make this second necessary condition plausible.
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3 Solving for the Equilibrium Allocation

In this section we further explore the relationship student characteristics, school choices, and school and

neighborhood amenities by explicitly solving the model from Section 2 for the equilibrium allocation of

families across schools under somewhat stronger assumptions.

First, we assume that the joint distribution of [X,XU , κ] and the joint distribution of As are both multi-

variate normal. Second, we assume that As does not depend on which families choose s (i.e. the elements

of As do not depend on directly on Xs or on Xu
s ). This is a restrictive assumption in the school choice

setting, but may be quite plausible in other settings (e.g. differentiated product choice).35 We continue to

assume that families freely choose locations subject to P (As). This enables us to exploit the second welfare

theorem result that any proposed allocation must be an equilibrium allocation if it satisfies the following two

conditions: (a) the allocation is feasible, and (b) the allocation is pareto efficient.

Recall that when εis is excluded from the model, any vectors [X,XU , κ] sharing the same value of the

index vector λ will feature the same willingness to pay for all possible neighborhoods. As a result, the exact

school assignment for a particular vector of characteristics [Xi, X
U
i , κi] conditional on λi carries no welfare

implications, which creates an infinite number of equilibrium allocations. Consequently, we focus on how

values of λi get mapped to amenity vectors A in equilibrium (which we call “λ-allocations”).

We restrict attention to linear λ-allocations of the form A = Ψλ′, where Ψ is a K ×K matrix, and we

proceed to show that there is a unique matrix Ψ that satisfies both feasibility and pareto efficiency.36

Consider first the feasibility requirement: demand for each value of amenity vector A1, . . . , AK gener-

ated by the proposed λ-allocation must equal supply. In our continuous context, feasibility means that the

distributions of amenity vectors supplied and demanded coincide. Let Σλ′i
denote the covariance matrix of

the joint distribution of the K-vector λ′i in the population, and let ΣA denote the covariance matrix of the

joint distribution of the K-vector As(i) in the population, where the dependence on i indicates that we are

considering the distribution that weights amenity combinations by the number of student slots. The overall
35Neither of these assumptions are required for Proposition 1 and so are not necessary to justify the use of school average

observable characteristics as a control function for school average unobservable characteristics.
36We have not yet proven but strongly suspect that the linear allocation represents the unique equilibrium λ-allocations when

non-linear λ-allocations are also considered. Gretsky et al. (1992) has already proven the existence of an equilibrium for a class of
games that includes our model.
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capacity across all schools/neighborhoods is assumed to match the number of students, which in the contin-

uous case means that the densities of [X,XU , κ] and A integrate to the same value, which we normalize to

1. Since the amenity vector demanded by a student with index λi in our proposed equilibrium is Ψλ′i, our

feasibility requirement can be written as:

ΣA = V ar(Ψλ′) = ΨΣλ′Ψ
′ (41)

Thus, feasibility requires that ΣA and Σλ′ be made congruent by the allocation matrix Ψ. Since both ΣA

and Σλ′ are full rank variance matrices, both are positive definite.37 Any pair of positive definite matrices is

known to be congruent to infinitely many matrices (there are infinitely many market-clearing ways to assign

students to schools).

Now consider the pareto efficiency requirement. SinceP (A) is a transfer, and we assume that schools/landowners

do not have preferences over families, requiring that the allocation S be pareto efficient is equivalent to re-

quiring that there are no possible exchanges of neighborhoods between any pair of families that would make

both families at least as well off and at least one family strictly better off.

Given a common price function P (A) across families, such mutually beneficial exchanges will only

exist if each family places a relatively higher valuation on the other family’s chosen school than their own.

Given that our money-metric utility function can be written as λ′A and the proposed λ-allocation A = Ψλ′,

a mutually beneficial exchange between families with the vectors λ1 and λ2 will exist iff λ1Ψλ′1−λ1Ψλ′2 <

λ2Ψλ′1 − λ2Ψλ′2. Thus, ruling out such exchanges requires:

λ1Ψλ′1 − λ1Ψλ′2 ≥ λ2Ψλ′1 − λ2Ψλ′2 ∀ (λ1, λ2) ∈ RKxRK (42)

37If either ΣA or Σλ′ were rank deficient, we could redefine the amenity factors to be a smaller number of linear combinations
of the original K amenity factors.
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But this equation can be reformulated as follows:

λ1Ψλ′1 − λ1Ψλ′2 ≥ λ2Ψλ′1 − λ2Ψλ′2 ∀ (λ1, λ2) ∈ RKxRK

⇒ (λ1 − λ2)Ψλ′1 − (λ1 − λ2)Ψλ′2 ≥ 0 ∀ (λ1, λ2) ∈ RKxRK

⇒ (λ1 − λ2)Ψ(λ1 − λ2)′ ≥ 0 ∀ (λ1, λ2) ∈ RKxRK

⇒ λ̃Ψλ̃′ ≥ 0 ∀λ̃ ∈ RK (43)

where λ̃ is defined to be the difference between two arbitrarily chosen row vectors λ1 and λ2. Equation

43 makes reveals that pareto efficiency requires Ψ to be a positive semi-definite or positive definite matrix.

But a matrix Ψ that was merely positive semi-definite would be rank deficient, and would violate feasibility,

since rank(ΨΣλ′Ψ
′) ≤ rank(Ψ) < rank(ΣA). Thus, Ψ must be positive definite. But two positive

definite matrices (in our case Σλ′ and ΣA) are made congruent by a unique positive definite matrix Lawson

and Lim (2006):

Ψ = Σ
−1/2
λ′ (Σ

1/2
λ′ ΣAΣ

1/2
λ′ )Σ

−1/2
λ′ (44)

Thus, since the matrix Ψ is the unique matrix satisfying both the pareto efficiency and feasibility require-

ments, it is the unique (linear) equilibrium λ-allocation.

Furthermore, since every positive definite matrix is invertible, we can also express the vector λi for any

individual as a linear function of the amenity vector of their chosen school:

λi = (Ψ−1As(i))
′.

To characterize the equilibrium price function, P (A), note that from (13) ∇P (Asi) = λ′i. Substituting

for λ′i using the above equation for the equilibrium relationship between λi and As(i), we obtain:

∇P (Asi) = Ψ−1As(i) (45)

The general solution to this linear first order partial differential equation is the following quadratic form:

P (A) = 0.5A′Ψ−1A+ c, for any c ∈ R (46)
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Furthermore, since Ψ−1 is the inverse of a positive definite function, it is also positive definite. And since

the positive definite Ψ−1 represents the Hessian of the equilibrium price function, P (A) must be strictly

convex, as previously supposed.

4 Monte Carlo Simulations Exploring Finite-Sample Properties

This section describes a set of monte carlo simulations designed to explore the finite-sample properties

of our control function estimator across a number of key dimensions. As discussed in section 4, a full

characterization of these finite-sample properties is not feasible, so we focus on a stylized test case that is

rich enough to reveal the strengths and weaknesses of our approach. Section 4.1 lays out the simulation

methodology, while Section 4.2 presents and interprets the results.

4.1 Methodology

The stylized test case we consider is one in which:

1. The elements of [Xi, X
U
i , κi] are jointly normally distributed; the elements of κ are independent of

each other and [Xi, X
U
i ], while each pair of characteristics in [Xi, X

U
i ] features a .25 correlation38.

2. The latent amenity vectors As are normally distributed with a .25 correlation between any pair of

amenities across schools.

3. The matrices of taste parameters Θk` and ΘU represent draws from a multivariate normal distribution

in which corr(Θk`,Θjm) = ρ if j = k or ` = m, and 0 otherwise.

4. The variances of the elements of As, [Xi, X
U
i , κi], εi,s are chosen to create interclass correlations

for Xi and XU
i of between .1 and .25 across specifications. These values are in line with the range

observed across the datasets used in the empirical analysis.

Our test case implies considerable sorting into schools along many dimensions of school amenities and

along many observable and unobservable dimensions of student quality. It represents a conservative case
38This is the average correlation between observed continuous student-level characteristics in ELS2002.
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because one might expect that in reality a few key observable (and unobservable) individual level factors (e.g.

parental income, education, and wealth) and a few key school/neighborhood amenities (ethnic composition,

crime, principal quality) drive most of the systematic sorting of students to schools. Given restrictions 1-

4, we complete the model by choosing particular sets of 7 remaining parameters. The first parameter is

students per school. For simplicity, we impose that each school has capacity equal to this student/school

ratio.39 The student/school ratio is denoted “# Stu” in Table 7. The second parameter is the total number

school/neighborhood combinations available (denoted “# Sch”).

The parameter #Con is the number of schools in the consideration set for each household. This cap-

tures the possibility that most parents only realistically consider a limited number of possible locations. We

implement this by distributing schools uniformly throughout the unit square, and drawing a random lati-

tude/longitude combination for each household. The households then consider the preset number of schools

that are closest to their location. Thus, consideration sets of different households are overlapping.

The fourth and fifth parameters (denoted “# Ob.” and “# Un.”) specify the number of observed and

unobserved student characteristics that affect outcomes. The sixth parameter is the dimension of the amenity

vector over which households have preferences. It is always less then or equal to the number of observed

characteristics, so that the rows of ΘU form a linear subspace of the rows of Θ̃, as required by Proposition

1.

The seventh parameter determines ρ, the correlation between any pair of random variables (Θk`,Θjm)

from which each (Θk`,Θjm is a draw. If ρ is high, then student characteristics that predict a high willingness

to pay for one amenity factor will also predict a high willingness to pay for other amenity factors, and

amenity factors that are strongly weighted by one characteristic are likely to be strongly weighted by other

characteristics (i.e. WTP for some amenity factors may generally be sensitive to student characteristics).

In addition, we also consider four additional specifications that illustrate the degree to which our control

function approach is robust to various failures of the spanning condition from Proposition 1 (i.e. cases in

which Θ 6= RΘ̃U for any R).
39We believe that this is essentially without loss of generality. Without a finite elasticity of supply of land/school vacancies

though, it is hard to avoid having tiny school sizes in locations with low values of amenities that tend to be highly desired. Fixed
costs would prevent this.
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Our measure of control function effectiveness, denoted “R-sq (All)”, is the R-squared from a regression

of the total contribution of school-averages of unobservable characteristics (XU
s β

U ) to each school’s average

outcome (which captures the potential bias from unobservable sorting) on the full vector of school-averages

of observed characteristic,Xs. The R-squared should converge to 1 as the number of students per school gets

large. However, the rate at which it does so is important for the efficacy of the control function approach.

We also present the R-squared values calculated when random samples of 10, 20, or 40 students from

each school are used to calculate the school averages Xs that compose the control function (these values are

denoted “R-sq (10)”, “R-sq (20)”, and “R-sq (40)”, respectively, in our tables).

We draw Xi, XU
i , κi, and {εis} from the distributions described above to calculate the willingness-to-

pay of each household for each school.40 Since our method does not require observation of the equilibrium

price function P (A), rather than iterating on an excess demand function to find the equilibrium matching, we

instead exploit the fact that a perfectly competitive market will always lead to a pareto efficient allocation.

The problem of allocating students to schools to maximize total consumer surplus can be written as a linear

programming problem, and solved quickly at relatively large scale using the simplex method combined with

sparse matrix techniques. 41

4.2 Simulation Results

The simulation results are presented in Table 7. Row (1) presents the base parameter set to which other

parameter sets will be compared. It features 1000 students per school and 50 schools in the area, all of which

are considered by each family when the school choice is made. It also features 10 amenities, 10 observable

student characteristics, and 10 unobservable student characteristics. The variances of these characteristics

are all identical, so that sorting on unobservables is as strong as sorting on observables. This is probably

a conservative choice. Finally, the correlation ρ between the random variables of which the taste weight

matrices Θ and ΘU are multivariate draws is assumed to be .25.
40To minimize the statistical “chatter” introduced by the particular Θ̃ matrix that we happened to draw, we drew ten different Θ̃

matrices from the prescribed distribution, ran the simulations for each parameter set for each of these matrices, and then averaged
the results across the ten iterations within each parameter set.

41The problem can actually be classified as a binary assignment problem (a subset of linear programming problems), but we were
unable to implement the standard binary assignment algorithms at scale.
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The first takeaway from Row (1) is that the control function approach is effective even with reasonably-

sized schools of 1000 students each (most of the schools in the North Carolina sample enroll between

250 and 2000 students) and a moderate number of available schools: 97 percent of the variance in the

school-level contribution of unobserved student characteristics can be predicted by a linear combination of

school-average observable characteristics (Column 8).42

The second insight revealed by Row (1) is that the performance of the control function may suffer when

estimation is based on small subsamples of students at each school. We see that the R-squared falls from

.972 to only .368 when school averages are merely approximated based on samples of 10 students (Column

8). Increasing the sample size to 20 students per school (Column 9) raises the R-squared to .501, while

increasing it further to 40 students per school raises the R-squared to .640.

Rows (2) and (3) illustrate the impact of adapting the specification in Row (1) by decreasing or increasing

the number of individuals per group. We see that the efficacy of the control function increases with the

number of individuals per group. Decreasing school sizes from 1000 to 500 decreases the R-squared from

.972 to .944, while increasing from 1000 to 2000 increases the R-squared to .986. Interestingly, increasing

the number of individuals sorting into each group has almost no impact on the effectiveness of the control

function if the larger number of individuals is not actually being used to construct the group averages of

individual characteristics, Xs; Columns (9) - (11) are nearly identical across Rows (1) - (3).

Comparing Row (4) to Row (1), we see that increasing the number of schools from 50 to 100 has

very little impact on the performance of the control function when the full population of students is used

to construct school averages. Interestingly, reducing the number of schools slightly reduces the problems

posed by using small samples of students from each school to construct Xs. Row (5) shows that restricting

the number of schools in each household’s consideration set from 50 to 10 reduces the control function’s

ability to absorb unobservable sorting, but only slightly. The R-squared drops modestly from Row (1) to

Row (5) across all columns (8) - (11). Nonetheless, the high R-squared in Row (5) reveals that our approach

does not require households to be considering large numbers of schools.
42In other simulations not shown, we directly examine the impact of increasing the variance of εis. We find that increasing

V ar(εis) reduces the between school variance in both Xi and XU
i symmetrically, but does not erode the effectiveness of Xs as

a control for XU
s if school sizes are sufficiently large (though the finite sample performance of the control function deteriorates

slightly). Intuitively, as V ar(εis) → ∞, idiosyncratic tastes fully drive choice, and the between school variation in Xi and XU
i

disappears, so that there is no more sorting problem to address.
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Row (6) illustrates the impact of doubling both the number of observable and unobservable outcome

relevant characteristics. By increasing the numbers of both observable and unobservable characteristics

symmetrically, we can show the impact of utilizing a richer control set while holding fixed the strength

of sorting on observables relative to unobservables.43 Doubling the number of elements of Xi and XU
i

increases the R-squared from .972 in Row (1) to .982. This somewhat small increase understates the im-

portance of the richness of the control set, since the control function was already nearly perfectly effective

for the baseline parameter set. Row (10) shows that when only 20 students are used to construct sample

school averages, doubling the control set from 10 to 20 characteristics increases the R-squared from .501

to .604. This highlights the importance of collecting data on a wide variety of student/parent inputs that

capture different dimensions of taste (as the panel surveys we use do).

Row (7) shows that doubling the number of amenity factors from 5 to 10 dramatically reduces the

effectiveness of the control function, dropping the R-squared from .972 in Row (1) to .914. Note, though,

that increasing the dimension of the amenity space has a negligible impact when small samples of students

are used to construct school averages (Columns (9) - (11)). However, Row (8), when compared to Row (6),

reveals that the performance of the control function really depends on the dimension of the amenity space

relative to the dimension of Xs, rather than the absolute number of amenities: when Xs has 20 elements,

the fraction of absorbed sorting bias barely falls when the number of amenities rises from 5 to 10.

Finally, Row (9) displays the results of a specification in which all of the Θk` and Θk`U elements are

drawn independently (ρ = 0). The R-squared falls moderately across columns (8) - (11) relative to Row (1),

which demonstrating the difficulty of fully characterizing the situations in which the control function will

perform adequately: almost every parameter of the model affects the efficacy of the control function.

Overall, the results in Table 7 indicate that the control function approach could work quite well even

in settings where 1) individuals have idiosyncratic tastes for particular groups, 2) there are only moderate

number of total groups to join, and 3) only a subset of these are considered by any given individual. The

simulations do suggest, however, that the control function may be less effective when 1) the dimension of
43In all of these simulations, we assumed that the strength of sorting on unobservables mirrored the strength of sorting on

unobservables. In results not shown, we also experimented with weakening the degree of sorting on unobservables by making ΘU

smaller in magnitude and increasing the variance of κi to compensate. While the control function absorbs a smaller fraction of
the between-school variance in unobservable outcome-relevant characteristics when sorting on these characteristics is weak, this is
precisely the case when the magnitude of the between-school variance in unobservables is small. Thus, there is very little potential
bias to be absorbed!
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underlying amenity factors is large relative to the number of independent factors represented by the observed

individual characteristics, or 2) only a sample of individuals is observed in each group. We revisit the latter

concern for our school effects application in Appendix Section 7 using the North Carolina administrative

data.

Note that all the specifications in Table 7 consider cases in which the conditions presented in Proposition

1 are satisfied, so that we should expect the control function to perfectly absorb sorting on observables as the

number of students per school gets sufficiently large. However, there may also be many contexts in which

the set of observables is not sufficiently rich to make our spanning condition plausible. Thus, we are also

interested in the extent which the addition of group-averages of individual characteristics can reduce bias

from sorting on unobservables, even if it cannot eliminate the bias.

Table 8 presents the results from four specifications representing distinct scenarios in which our span-

ning condition fails. The worst-case scenario is one in which the unobservable characteristics only predict

willingness-to-pay for a set of amenities that the observable characteristics do not affect taste for. We im-

plement this scenario by setting all the parameters at their values from the baseline specification from Row

(1) of Table 7, but allowing the elements of XU
i to only predict WTP for the last amenity, A5, while the

elements of Xi only predict WTP for amenities A1 to A4. Since the group-averages of the observables

and unobservables are functions of disjoint sets of amenities, it comes as no surprise that only 37% of the

variance in XU
s is predictable given Xs, even when the universe of students at each school is observed.

The second scenario alters the first scenario by allowing the unobservable characteristics XU
i to predict

willingness-to-pay for amenitiesA1 toA4 in addition toA5. The control function performs somewhat better:

56% of the variance in XU
s is absorbed by the coefficients on Xs.

These two scenarios are quite pessimistic, however. If willingness-to-pay for an amenity is unaffected

by the entire vector Xi, then it seems likely that a subset of the unobservables may not predict WTP for

this amenity either. Thus, we consider two additional scenarios in which willingness-to-pay for the last

amenity (A5) is only by one of the ten components of the unobserved vector XU
i . In the third scenario,

XU
i,10 affects willingness-to-pay for A5 only. In the fourth scenario, XU

i,10 predicts willingness to pay for all

amenitiesA1 toA5. Rows (4) and (5) reveal that our control function performs quite well in these scenarios:

it absorbs 96% of the variation in XU
s when XU

i,10 predicts willingness-to-pay for A5 only, and 97% when
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XU
i,10 predicts willingness-to-pay for all five amenities (compared to the the baseline of 97.2% from Row

(1)).

We conclude that our control function approach is likely to be quite robust to the violations of the span-

ning condition that are arguably the most plausible: those that involve just a few components of the individ-

ual’s unobservable outcome contribution affecting willingness-to-pay for just a few additional amenities for

which Xi does not predict preferences.

5 Estimation of Model Parameters

In this section we discuss estimation of the coefficients B, G1, and G2. The estimation strategy depends

on the outcome, so we consider the outcomes in turn.

5.1 Years of Postsecondary Academic Education

Parameter estimation is most straightforward in the case of years of postsecondary academic education.

We estimate B using ordinary least squares regression with high school fixed effects, which controls for all

observed and unobserved school and neighborhood influences.

Recall that Zs is comprised of two components: Zs = [Xs;Z2s]. Z2s consists of school and neighbor-

hood characteristics for which direct measures are available, such as student/teacher ratio, city size, and

school type. Xs consists of school wide averages for each variable in Xsi, such as parental education or

income, which we do not observe directly but must estimate from sample members at each school. Con-

sequently, the makeup of Xs differs across specifications that use different X vectors. G1 and G2 are the

corresponding subsets of the coefficients in G.

We replace Xs with X̄s, where X̄s is the average of Xi computed over all available students from the
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school.44 We estimate G1 and G2 by applying least squares regression to

Ysi −XsiB̂ = XsG1 + Z2sG2 + vs,i

using the appropriate panel weights from the surveys.

5.2 Permanent Wage Rates

Abstracting from the effects of labor market experience and a time trend, let the log wage Ws,i,t of

individual i, from school s, at time t be governed by

Ws,i,t = Ws,i + es,i,t + ξs,i,t.

In the above equation Ws,i is i’s “permanent” log wage (given that he/she attended high school s) as of

the time by which most students have completed education and spent at least a couple of years in the labor

market, which we take to be 1979 in the case of NLS72. es,i,t is a random walk component that evolves as a

result of luck in the job search process or within a company, or perhaps changes in motivation or productivity

due to health and other factors. We normalize es,i,t to be 0 in 1979.45 ξs,i,t includes measurement error

and relatively short term factors that have little influence on the lifetime earnings of an individual. The

determination of the permanent wage is given by 16 with Ysi defined to be Ws,i. After substituting for Ws,i,

the wage equation is

Ws,i,t = Xs,iB +XsG1 + Z2sG2 + vs,i + es,i,t + ξs,i,t.

We estimate B by OLS with school fixed effects included.46

44A substantial number of students who appear in the base year of the surveys can be used to construct X̄s but cannot be used
to estimate (5.1) because some variables, such as test scores, are missing, or because the students are not included in the follow-
up surveys that provide the measure of Ys,i. As we discuss in Section 7, we impute missing values for most of our explanatory
variables prior to estimating B and G, but we do not use the imputed values when constructing the school averages.

45We include es,i,t as well as ξs,i,t because the earnings dynamics literature typically finds evidence of a highly persistent wage
component. Several studies cannot reject the hypothesis that es,i,t is a random walk. Recent examples include Baker and Solon
(2003), Haider (2001), and Meghir and Pistaferri (2004).

46In reality, we also include a vector Ti,t consisting of a dummy indicator for the year 1979 (relative to 1986), years of work
experience of i at time t, and experience squared. Let Ψ be the corresponding vector of wage coefficients. We adjust wages for
differences in labor market experience and for whether the data are from 1979 or 1986 by subtracting Ti,tΨ̂ from the wage prior
to performing the variance decompositions. The estimate of Ψ̂ depends on whether tests, postsecondary education, or both are in
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Let W̃s,i,t ≡Ws,i,t −XiB̂. We estimate G1 and G2 by applying OLS to

W̃s,i,t = X̄sG1 + Z2sG2 + vs,i + es,i,t + ξs,i,t (47)

The presence of ξs,i,t complicates the variance decompositions, as we discuss below.

5.3 High School Graduation and College Enrollment

The methods outlined in Appendix Sections 5.1 and 5.2 need to be adapted for binary measures such as

high school graduation and college attendance. Consequently, for high school graduation we reinterpret Ys,i

to be the latent variable that determines the indicator for whether a student graduates, HSGRADs,i. That

is,

HSGRADs,i = 1(Ys,i > 0).

Or, after substituting for Ysi,

HSGRADs,i = 1(XiB +XsG1 + Z2sG2 + +vs,i > 0) (48)

We replace Xs with X̄s and estimate the equation

HSGRADs,i = 1(XiB + X̄sG1 + Z2G2 + (Xs − X̄s)G1 + vs,i > 0) (49)

using maximum likelihood probit. The procedure for enrollment in a four-year college is analogous to that

of high school graduation.

6 Decomposing the Variance in Educational Attainment and Wages

In this section we discuss an analysis of variance based on equation that can be used to place a lower

bound on the importance of factors that are common to students from the same school.47 As with parameter

Xsi. We report results with and without these variables. In our main specification, we exclude postsecondary education from Xsi.
47Jencks and Brown (1975) propose and implement a similar decomposition.
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estimation, the details of our procedure depend upon the outcome. We begin with years of postsecondary

education.

6.1 Years of Postsecondary Education

One may decompose V ar(Ys,i) into its within and between school components

V ar(Ys,i) = V ar(Ys,i − Ys) + V ar(Ys)

where (Ys,i − Ys) is the part of Ys,i that varies across students in school s and Ys is the average outcome

for students from s. We estimate V ar(Ys,i − Ys) by using the sample variances of V ar(Ys,i − Y s) with

an appropriate correction for degrees of freedom lost in using the sample mean Y s in place of Ys. Then

V ar(Ys) can be estimated as

V̂ ar(Ys) = V̂ ar(Ys,i)− V̂ ar(Ys,i − Ys).

Then, from (6),

(Ys,i − Ys) = (Xi −Xs)B + (vs,i − vs)

and

Ys = XsB +XsG1 + Z2sG2 + vs.

Thus, one may express the outcome variance as48

V ar(Yi) = [V ar((Xi −Xs)B) + V ar(vs,i − vs)]+ (50)

[V ar(XsB) + 2Cov(XsB,XsG1) + 2Cov(XsB,Z2sG2) + V ar(XsG1)+ (51)

2Cov(XsG1, Z2sG2) + V ar(Z2sG2) + V ar(vs)] (52)

Given an estimate of B, V ar((Xi − Xs)B) can be estimated using its corresponding sample variance,

V ar((Xi − Xs)B). V ar(vs,i − vs) can then be estimated as V̂ ar(Ys,i − Ys) − V̂ ar((Xi − Xs)B), and

48The equation below imposes Cov(Xs,iB, vs,i− vs) = 0, which is implied by our definition of B and vs,i− vs. The equation
also assumes Cov(Xs, vs) = 0 and Cov(Z2s, vs) = 0, which are implied by our definition of [G1, G2] and vs (see Section 5).

67



V ar(XsB) can be calculated as V̂ ar(XiB) − V̂ ar((Xi −Xs)B). One can also estimate the components

V ar(XsG1),V ar(Z2sG2) of the school/community contribution and the common terms 2Cov(XsB,XsG1),

2Cov(XsB,Z2sG2) and 2Cov(XsG1, Z2sG2) using the estimates of B, G1, G2 and the data X̄s and Z2s.

V ar(vs) can be calculated as

V̂ ar(vs) =

V̂ ar(Ys)− V̂ ar(XsB)− V̂ ar(XsG1)− V̂ ar(Z2sG2)

− 2Ĉov(XsB,XsG1)− 2Ĉov(XsB,Z2sG2)− 2Ĉov(XsG1, Z2sG2)

6.2 Permanent Wage Rates

We focus on decomposing the permanent wage component Ws,i. We take advantage of the existence

of panel data on wages in NLS72 and work with a balanced sample of individuals who report wages in

both 1979 and 1986 (the fourth and fifth follow-ups, respectively). We estimate the variance in the perma-

nent component of the wage, V ar(Ws,i), using the covariance between wage observations from the same

individual in different years

Cov(Ws,i,t,Ws,i,t′) = Cov(Ws,i + es,i,t + ξs,i,t,Ws,i + es,i,t′ + ξs,i,t′)

= V ar(Ws,i),

whereCov(ξs,i,t, ξs,i,t′) is assumed to be 0 given that the observations are seven years apart andCov(es,i,t, es,i,t′) =

0 from normalizing es,i,t to be 0 in 1979. We use the sample estimate of Cov(Ws,i,t,Ws,i,t′) as our estimate

of V ar(Ws,i). We estimate this covariance by subtracting out the global mean for Ws,i,t, calculating the

wage product (Ws,i,t)(Ws,i,t′) for each individual, and taking a weighted average across all the individ-

uals in the sample using the weights discussed in Appendix Section 8, adjusting for degrees of freedom.

Similarly, we estimate the between-school component of the permanent wage, V ar(Ws), by estimating the

covariance between wage observations for different years (1979 and 1986) from different individuals from
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the same school. Specifically, we use the moment condition

Cov(Ws,i,t,Ws,j,t′) = Cov(Ws,i + es,i,t + ξs,i,t,Ws,j + es,j,t′ + ξs,j,t′), i 6= j, t 6= t′

= V ar(Ws),

where Cov(es,i,t, es,j,t′) is defined to be 0, and Cov(ξs,i,t, ξs,j,t′) is assumed to be 0. We estimate this co-

variance by first calculating ((Ws,i,tWs,j,t′) + (Ws,i,t′Ws,j,t))/2 for each pair of individuals i and j at school

s and then computing the weighted mean for each school s. We then average across schools, weighting each

school by the sum of the weights of the individuals who contributed to the school-specific estimate.

We estimate the corresponding within school component using

V̂ ar(Ws,i −Ws) = V̂ ar(Ws,i)− V̂ ar(Ws).

Given V̂ ar(Ws,i), V̂ ar(Ws,i−Ws), V̂ ar(Ws), Ĝ1, Ĝ2, and B̂, estimation of the contributions ofXs,iB,

XsG1, Z2sG2, vs,i, and vs to V ar(Wsi) proceeds as in previous subsection.

6.3 High School Graduation and College Enrollment

For both of our binary outcomes, high school graduation and enrollment in a four-year college, we

decompose the latent variable that determines the outcome. Given that there is no natural scale to the

variance of the latent variable, we normalize V ar(vs,i−vs) to one, and define the total variance of the latent

variable to be

V ar(Yi) = [V ar((Xi −Xs)B) + 1]+ (53)

[V ar(XsB) + 2Cov(XsB,XsG1) + 2Cov(XsB,Z2sG2) + V ar(XsG1)+ (54)

2Cov(XsG1, Z2sG2) + V ar(Z2sG2) + V ar(vs)] (55)
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Given that the raw variance component estimates are specific to the choice of normalization, we instead

report fractions of the variance contributed by the various components.

7 Evaluating the Magnitude of Bias from Limited Samples of Students Per

School

Before considering estimates from the three survey datasets, we first use the North Carolina sample to

better gauge the biases produced by the student sampling schemes used by each survey. The monte carlo

simulations in Section 4 suggested that estimation based on subsamples of 20 students per school (similar to

those in the three datasets) could result in a substantial decrease in the ability of school-average observables

to capture sorting on unobservables. However, these simulations are based on particular assumptions about

the dimensionality of the underlying desired amenities, the joint distribution of the observable and unoberv-

able characteristics, and the degree to which these characteristics predict tastes for schools/neighborhoods.

In this appendix, we assess the potential for bias in our survey-based estimates more directly by drawing

samples of students from North Carolina schools using either the NLS72, NELS88, or ELS2002 sampling

schemes and re-estimate the model for high school graduation using these samples. By comparing the results

derived from such samples to the true results based on the universe of students in North Carolina, we can

determine which if any of the survey datasets is likely to produce reliable results. To remove the chatter

produced by a single draw from these sampling schemes, we computed estimate averages over 100 samples

drawn from each sampling scheme.

Table 9 presents the results of this exercise. For comparison, the first column of Panel A presents

the variance decomposition described in Section 6 for the full North Carolina sample, while the first col-

umn of Panel B converts these variance components isolating school/neighborhood effects into our lower

bound estimates of the average impact of moving from the 10th to the 90th quantile of the distribution of

school/neighborhood contributions. Columns 2 through 5 display the results from recompute these estimates

subsamples of the North Carolina population featuring with the same distributions of school-specific sample

sizes as in NLS72, ELS, grade 8 schools in NELS88 and grade 10 schools in NELS88.49 Column 2 displays
4910th grade schools are based on the schools in which the origina 8th grade NELS sample are observed in the first follow-up
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the results from recomputing these estimates using subsamples of the North Carolina student population

featuring the distribution school-specific sample sizes observed among 12th grade schools in NLS72. We

see that the use of small student samples at each school produces may actually produce a relatively small

amount of bias. Most of the rows of Panel A match quite closely across Columns 1 and 2. Of particular

interest are the last two rows of Panel A: we see that the NLS72 sample size distribution overstates the true

variance fraction for the lower bound without common shocks, V ar(Z2sG2), by 0.88%, and understates

true variance fraction for the lower bound that may include common shocks, V ar(Z2sG2 + vs), by 0.38%.

These translate to over/under estimates of the impact of a 10th-90th quantile shift in school quality on the

probability of graduation of .0188 and .0111, respectively. Comparing the full NC sample with the NELS88

grade 8 and ELS2002 results (Columns 3 and 5), we see a similar pattern. These results are comforting, and

suggest that the estimates from these samples may overstate the lower bound slightly in the estimates that

attempt to exclude common shocks, but may even understate appropriate lower bound estimates that include

common shocks.

Column 4 reports results from NELS88 in which students are grouped by their 10th grade school rather

than their 8th grade school. Since grade 10 schools were not part of the original NELS88 sampling frame,

they feature particularly small samples of students, and only produce large samples of students to the extent

that many students from a given grade 8 school attend the same grade 10 school. These results reveal that

considerable bias may be produced if student samples are sufficiently small. Looking at the last two rows

of Panel A, we that the NELS grade 10 sample size distribution overstates the true variance fraction for

the lower bound without common shocks by 1.7 percent, and the lower bound with common shocks by 1.4

percent. These translate to overestimates of the impact of a 10th-90th quantile shift in school quality of 3.9

percentage points and 2.2 percentage points, respectively. Due the poor performance of the NELS grade

10 school sample size distribution in our simulation test, we do not report any NELS88 results that group

students by their grade 10 school.

8 Construction and Use of Weights

In the NLS72 analyses of four-year college enrollment and postsecondary years of education, we use a set

survey.
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of panel weights (w22) designed to make nationally representative a sample of respondents who completed

the base-year and fourth-follow up (1979) questionnaires. For the NLS72 wage analysis, we chose a set of

panel weights (comvrwt) designed for all 1986 survey respondents for whom information exists on 5 of 6

key characteristics: high school grades, high school program, educational attainment as of 1986, gender,

race, and socioeconomic status. Since there are very few 1986 respondents who did not also respond in

1979, this weight matches the wage sample fairly well. For the NELS88 sample, we use a set of weights

(f3pnlwt) designed to make nationally representative the sample of respondents who completed the first four

rounds of questionnaires (through 1994, when our outcomes are measured). For the ELS02 sample, we use a

set of weights (f2bywt) designed to make nationally representative a sample of respondents who completed

the second follow up questionnaire (2006) and for whom information was available on certain key baseline

characteristics (gathered either in the base year questionnaire or the first follow-up). This seemed most

appropriate given that our outcomes are measured in the 2006 questionnaire and we require non-missing

observations on key characteristics for inclusion in the sample.

We use panel weights in the estimation for a number of reasons. The first is to reduce the influence of

choice-based sampling, which is an issue in NELS88 and in the wage analysis based on NLS72. The second

is to correct for non-random attrition from follow-up surveys. The third is a pragmatic adjustment to account

for the possibility that the link between the observables and outcomes involves interaction terms or nonlin-

earities that we do not include. The weighted estimates may provide a better indication of average effects

in such a setting. Finally, various populations and school types were oversampled in the three datasets, so

that applying weights makes our sample more representative of the universe of American 8th graders, 10th

graders, and 12th graders, respectively. Note, though, that we do not adjust weights for item non-response

associated with the key variables required for inclusion in our sample. Thus, even after weighting, our es-

timates do not represent estimates of population parameters for the populations of American high school

students of which the surveys were designed to be representative.
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9 Other Applications: Estimating Teacher Value-Added

This section examines how our central insight that group-averages of observed individual characteris-

tics can control for group-averages of unobserved individual characteristics can be extended to contexts in

which group assignments are determined by a central administrator rather in a decentralized competitive

equilibrium. The particular context we consider is one in which a school principal is assigning students

to classrooms based on a combination of observed and unobserved (to the econometrician) student inputs,

where the goal is to estimate each teacher’s value-added to test score achievement.

9.1 Sorting of Students Across Class Rooms

Assume for now the administrator has already determined which teachers to allocate to which courses

for which periods of the day, so that a classroom c can be effectively captured by a vector of amenity values

Ac. Consider first the case in which none of amenities reflect the demographic make up of the class and

are endogenous to the principal’s assignment decisions, so that the amenity vector Ac can be considered

exogenous to the principal’s student-to-classroom allocation problem. Instead, these amenities may include

the principal’s perceptions of various teacher attributes or skills, but could also include classroom amenities

unrelated to teacher quality that might reflect whether the heating works, the quality of classroom technology

in the room, the time in the day that the class is held, or the difficulty level of the class. As noted in

Section 9, exogeneity of the amenity vector may be a reasonable assumption in some high school and college

contexts in which students submit course preferences and a schedule-making algorithm assigns students to

classrooms.

We can then adapt the utility function featured in equation (2) to model the payoff that the principal

obtains from assigning student i to class c (simply replace all s subscripts with c subscripts). As before, Xi

is a vector of student characteristics that are observed by the econometrician and are relevant for the outcome

Yi, the student’s end-of-year standardized test score. Similarly, XU
i is a vector of student characteristics that

are unobserved by the econometrician but are observed by the principal and are relevant for test score

performance, and κi represents a vector of student characteristics that are unobserved by the econometrician

and observed by the principal, but do not affect test score performance. The Θ parameter matrix might
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capture a principal’s belief about which types of students are most likely to benefit from a better teacher

or difficulty level. Θ might also reflect a desire to placate parents or students, where students/parents with

certain values of Xi or XU
i are more likely to advocate for particular classroom assignments. Some parental

or student characteristics may predict a stronger preference for a particular difficulty level or time of day,

while others predict a stronger preference for teacher quality. Similarly, the idiosyncratic match value εci

might capture, for example, the desire to fulfill a particular parent’s request that their child be assigned to

the same teacher that his brother had. Thus, we model parent and student preferences as affecting choice

through their impact on principal preferences.50

Suppose, as in Appendix Section 3, that the space of classroom amenities is continuous, that εic =

0 ∀ (i, c), and that the distributions of both student characteristics and student-weighted classroom amenities

Ac(i) are jointly normal. Recall that the efficiency implications of alternative allocations only depend on the

summary taste vector λi ≡ (XiΘ + XU
i ΘU + κ). Let f(λi) denote the PDF of λi across the student

population, and let U(λ,A) = λA denote the rewritten utility function. Then we can write the principal’s

problem as:

max
Ψ

∫ λ

λ
U(λ,Ψλ)f(λ)dλ

s.t. E[Ψλ] = E[A]

s.t. V ar(Ψλ) = V ar(A)

where we have restricted our attention to linear allocations of the formAc(i) = Ψλi. Note that the constraints

represent the same feasibility conditions as those from the school choice problem solved in Appendix Sec-

tion 3, and pareto optimality remains a necessary condition for the objective function
∫ λ
λ U(λ,Ψγ)f(λ)dλ

to be maximized. Indeed, the equivalence of the two problems is essentially a manifestation of the first

and second welfare theorems. Consequently, the solution Ψ = Σ
−1/2
λ′ (Σ

1/2
γ′ ΣAΣ

1/2
λ′ )Σ

−1/2
λ′ will also be the

same. Furthermore, if the spanning condition ΘU = RΘ̃ is satisfied for some matrix R, Xc will be a linear

function of XU
c .

50Rothstein (2009) provide a useful classroom assignment model in which principals assign students to classrooms based on
student characteristics that are observable to both the principal and the econometrician Xi and student characteristics that are only
available to the principal (part of XU

i ). He discusses bias in VAM models that include Xi and possible some other controls. He
does not study the potential for Xc to control for XU

c .
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However, in the elementary and middle school contexts, it seems particularly likely that some elements

of Ac could reflect the student makeup of the class. Including anticipated peer effects complicates the

specification of principal preferences, since now the utility from assigning a given student to a classroom

would depend on the other students assigned to the classroom. The classroom sorting problem differs from

the school/neighborhood sorting problem in that the principal would internalize the effect that allocating a

student to c has onAc, while parents would takeAs as given. We have not yet solved a classroom assignment

problem with endogenous amenities.

9.2 Implications for Estimation of Teacher Value Added

Suppose that the true classroom contribution to a given student i’s test scores can be captured by ZcΓ +

ZUc(i),iΓ
U , mirroring equation (16). As before, partition the vector of observed classroom characteristics into

two parts Zc = [Xc, Z2c], where Xc captures classroom averages of observed student characteristics, and

Z2c represents other observed classroom characteristics. 51 Consider the classroom version of our estimating

equation (29):

Yi = Xiβ +XcG1 + Z2cG2 + vci, (56)

When past test scores are elements ofXi and a design matrixDc(i) indicating which classrooms were taught

by which teachers is included inZ2c, equation (56) represents a standard teacher value-added specification.52

Suppose that Proposition 1 can be extended to classroom choice setting (as proven in the exogenous

amenities case) and that the corresponding spanning condition is satisfied, so that Xc and XU
c are linearly

dependent. Suppose in addition that the principal’s perception of teacher quality is noisy, so that Dc is

not collinear with Ac (and therefore not collinear with Xc). Then our analysis in Section 5.3 suggests

that G2 = Γ2 + ΠZUc Z2c
ΓU . Since Z2c includes the teacher design matrix Dc(i), we see that including

classroom averages of student characteristics Xc in teacher value-added regressions will purge estimates of

individual teachers’ value-added from any bias from non-random student sorting on either observables or

unobservables. Any remaining bias ΠZUc Z2c
ΓU stems from the possible correlation between the assignment

of the chosen teacher to the classroom and other aspects of the classroom environment.
51We assume here that teacher quality is not classroom-specific, as in most teacher value-added models.
52Z2c might also include a set of indicators for the teacher’s experience level.
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However, suppose that all unobserved classroom factors that are inequitably distributed across teachers

are either being used as a basis for student allocation to classrooms or are directly included as other controls

in Zc. Then the analysis in Section 5.3.1 reveals that including classroom averages of observed student

characteristics will also purge teacher value-added estimates G2 of any omitted variables bias driven by

inequitable access to advantageous classroom environments (the subvector of ΠZUc Z2c
corresponding to the

teacher design matrix Dc will equal 0).

Of course, our simulations suggest that the effectiveness of the control function approach depends on

observing reasonably large samples of students with each teacher. And in practice there may be classroom

factors ignored by students and principals that do not even out across teachers. While these caveats should

be kept in mind, our analysis may partially explain the otherwise surprising finding that non-experimental

OLS estimators of teacher quality produce nearly unbiased estimates of true teacher quality as ascertained

by quasi-experimental and experimental estimates (Chetty et al. (2014), Kane and Staiger (2008)).

10 Appendix Tables
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Table 6: Principal Components Analysis of the Vector of School Average Observable Characteristics Xs

Panel A: Fraction of Total Variance in Xs

Explained by Various Numbers of Principal Components

NLS NELS gr8 ELS

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

(1) # of Variables in Xs 32 34 39 49 40 51

# Factors Needed to Explain:

(2) 75% of Total Xs Var. 7 7 7 9 6 8

(3) 90% of Total Xs Var. 12 12 13 16 11 14

(4) 95% of Total Xs Var. 15 15 17 20 14 19

(5) 99% of Total Xs Var. 20 21 22 26 20 25

(6) 100% of Total Xs Var. 23 24 27 32 26 33

Panel B: Fraction of Variance in the Regression Index XsĜ1

Explained by Various Numbers of Principal Components

NLS NELS gr8 ELS

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

(1) # of Variables in Xs 32 34 39 49 40 51

# Factors Needed to Explain:

(2) 75% of V ar(XsG1) 3 3 6 5 2 5

(3) 90% of V ar(XsG1) 8 7 10 10 5 11

(4) 95% of V ar(XsG1) 10 9 13 13 7 15

(5) 99% of V ar(XsG1) 14 15 19 20 14 22

(6) 100% of V ar(XsG1) 23 24 27 32 26 33
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Table 7: Monte Carlo Simulation Results: Cases in which the Spanning Condition
in Proposition 1 is Satisfied (ΘU = ΨΘ For Some Ψ)

Row # Stu. # Sch. # Con. # Ob. # Un. # Am. Θ Corr R-Sq (All) R-Sq (10) R-Sq (20) R-Sq (40)

(1) 1000 50 50 10 10 5 0.25 0.972 0.368 0.501 0.640

(2) 500 50 50 10 10 5 0.25 0.944 0.374 0.497 0.641

(3) 2000 50 50 10 10 5 0.25 0.986 0.376 0.497 0.644

(4) 1000 100 50 10 10 5 0.25 0.969 0.293 0.443 0.595

(5) 1000 50 10 10 10 5 0.25 0.968 0.354 0.479 0.619

(6) 1000 50 50 20 20 5 0.25 0.982 0.495 0.604 0.715

(7) 1000 50 50 10 10 10 0.25 0.914 0.363 0.482 0.608

(8) 1000 50 50 20 20 10 0.25 0.976 0.492 0.580 0.682

(9) 1000 50 50 10 10 5 0 0.958 0.320 0.422 0.566

# Stu.: Number of students per school

# Sch.: Total number of schools

# Con.: Number of schools in each family’s consideration set

# Ob: Number of observable student characteristics

# Un: Number of unobservable student characteristics

# Am.: Number of latent amenity factors valued by families

Θ Corr: Correlation in Θlk taste parameters across student characteristics for a given amenity and across amenities
for a given student characteristic

R-sq(all): Fraction of between-school variance in unobservable student characteristics XU
s β

U explained by the
control function Xs (sample averages Xs computed using all students)

R-sq(10/20/40): Fraction of between-school variance in unobservable student characteristics XU
s β

U explained by
the control function Xs (sample school averages Xs computed using 10/20/40 students)
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Table 8: Monte Carlo Simulation Results: Cases in which the Spanning Condition
in Proposition 1 Fails

Row WTP for A1 −A4 WTP for A5 R-Sq (All) R-Sq (10) R-Sq (20) R-Sq (40)

(1) Depends on all elements of Depends on all elements of 0.972 0.368 0.501 0.640
Xi and XU

i Xi and XU
i

(2) Depends on each element of Depends on each element of 0.369 0.260 0.282 0.313
Xi, independent of all XU

i XU
i , independent of Xi

(3) Depends on all elements of Depends on each element of 0.561 0.296 0.361 0.440
Xi and XU

i XU
i , independent of Xi

(4) Depends on all elements of Depends on only on XU
i,10 0.961 0.367 0.490 0.635

Xi and XU
i

(5) Depends on all elements of Depends only on XU
i,10 0.970 0.406 0.553 0.693

Xi and XU
i except XU

i,10

All specifications in Panel B share the following parameter values: # Stu. = 1000, # Sch. = 50, # Con. = 50, # Ob =
10, # Un = 10, # Am. = 5, Θ Corr = 0.25 (See Table 8 for definitions of parameters).
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Table 9: Bias from Observing Subsamples of Students from Each School: Comparing Results from the Full
North Carolina Sample to Results from Subsamples Mirroring the Sampling Schemes of NLS72, NELS88,

and ELS2002

Panel A: Fractions of Total Outcome Variance

Row Full NC Sample NLS72 NELSg8 NELSg10 ELS2002

Within School:
Total 0.9153 0.9126 0.9131 0.8763 0.9120

V ar(Yis − Ys)
Observable Student-Level (Within): 0.1244 0.1296 0.1296 0.1301 0.1285
V ar((Xsi −Xs)B)

Unobservable Student-Level (Within) 0.7909 0.7828 0.7834 0.7461 0.7834
V ar(vsi − vs)

Between School:
Total 0.0847 0.0874 0.0869 0.1237 0.088
V ar(Ys)

Observable Student-Level: 0.0181 0.018 0.0183 0.0179 0.0184
V ar(XsB)

Student-Level/ 0.0165 0.0175 0.0170 0.0187 0.175School-Level Covariance
2 ∗ Cov(XsB,XsG1 + Z2sG2)

School-Avg. Student-Level/ -0.0166 -0.0047 0.0061 -0.0053 -0.0054School Char. Covariance
2 ∗ Cov(XsG1, Z2sG2)

School-Avg. Student-Level 0.0178 0.0125 0.0137 0.0290 0.0139
V ar(XsG1)

School Char. 0.0181 0.0269 0.023 0.0353 0.0238
V ar(Z2sG2)

Unobservable School-Level 0.0309 0.0173 0.0211 0.0283 0.0199
V ar(vs)

Panel B: 10th to 90th Quantile Shifts in School Quality

Row Full NC Sample NLS72 NELSg8 NELSg10 ELS2002

LB no unobs 0.1056 0.1254 0.1167 0.1435 0.1177
V ar(Z2sG2)

LB w/unobs 0.1742 0.1631 0.164 0.1959 0.1626
V ar(Z2sG2 + vs)
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Table 10: NLS72: Variables Used in Baseline and Full (in Italics) Specifications

Student Characteristics

Race Indicators, Gender Indicator

Student Ability

Math Standardized Score*, Reading Standardized Score*

Student Behavior

Family Background

Standardized SES, Number of Siblings, Indicators for Presence Biological Parents at Home,
Father’s Years of Education, Mother’s Years of Education, Moth. Yrs. Ed. Missing,
Log(Family Income),1(English Spoken at Home), Indicators for Parental Religion,
Indicators for Father’s Occupation Group, Indicators for Mother’s Occupation Group
Home Environment Indicators (1st Principal Component)

Parental Expectations

School Characteristics (Treated as elements of Xs*)

School Pct. Minority

School Characteristics (Treated as elements of Z2s)

1(Catholic School), 1(Private Non-Catholic School), Total School Enrollment,
Student-Teacher Ratio, Pct. Teacher Turnover Since Last Year,
Pct. of Teachers w/ Master’s Degrees or More, School Teacher Pct. Minority,
1(Tracking System), Age of School Building, Distance to 4-year College
Distance to Community College

Neighborhood Characteristics

Urbanicity Indicators (Detailed), Indicators for U.S. Census Region

*School characteristics treated as elements of Z1 are included to reduce measurement error in school sample averages of student char-
acteristics. They do not contribute to the estimated lower bound on the contribution of schools/neighbhorhoods to outcomes
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Table 11: NELS88: Variables Used in Baseline and Full (in Italics) Specifications

Student Characteristics

Race Indicators, 1(Female), 1(Immigrant), Self-Reported Athleticism Index

Student Ability

Math Standardized Score*, Reading Standardized Score*

Student Behavior

Hrs./Wk. Spent on Homework, Parents Often Check Homework,
Hrs./Wk. Spent on Leisure Reading, Hrs./Wk. Spent Watching TV,
Physical Fight This Year

Family Background

Standardized SES, Number of Siblings, Indicators for Presence Biological Parents at Home,
Father’s Years of Education, Mother’s Years of Education, Moth. Yrs. Ed. Missing,
Log(Family Income),1(English Spoken at Home), Indicators for Parental Religion,
1(Parents are Married), 1(Immigrant Father), 1(Immigrant Mother),
Indicators for Father’s Occupation Group, Indicators for Mother’s Occupation Group,
Home Environment Indicators (1st Principal Component),
Parental School Involvement Indicators (1st Principal Component)

Parental Expectations

Mother’s Desired Yrs. of Ed., Father’s Desired Yrs. of Ed.

School Characteristics (Treated as elements of Xs*)

School Pct. Minority, School Pct. Free/Reduced Price Lunch,
School Pct. LEP, School Pct. Special Ed.,
School Pct. Remedial Reading, School Pct. Remedial Math

School Characteristics (Treated as elements of Z2s)

1(Catholic School), 1(Private Non-Catholic School), Total School Enrollment,
Student-Teacher Ratio, Pct. Teacher Turnover Since Last Year, Log(Min. Teacher Salary)
Pct. of Teachers w/ Master’s Degrees or More, School Teacher Pct. Minority,
1(Gifted Program Exists), 1(Collectively Bargained Contract),
School Security Policy Indicators (1st and 2nd Principal Components)

Neighborhood Characteristics

Urbanicity Indicators (Urban/Suburban/Rural), Indicators for U.S. Census Region

*School characteristics treated as elements of Z1 are included to reduce measurement error in school sample averages of student char-
acteristics. They do not contribute to the estimated lower bound on the contribution of schools/neighbhorhoods to outcomes
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Table 12: ELS2002: Variables Used in Baseline and Full (in Italics) Specifications

Student Characteristics

Race Indicators, 1(Female), 1(Immigrant)

Student Ability

Math Standardized Score*, Reading Standardized Score*

Student Behavior

Hrs./Wk. Spent on Homework, Parents Often Check Homework,
Hrs./Wk. Spent on Leisure Reading, Hrs./Wk. Spent Watching TV,
Hrs./Wk. Spent on Computer, Physical Fight This Year

Family Background

Standardized SES, Number of Siblings, Indicators for Presence Biological Parents at Home,
Father’s Years of Education, Mother’s Years of Education, Moth. Yrs. Ed. Missing,
Average of Grandparents’ Education, Log(Family Income),1(English Spoken at Home),
Indicators for Parental Religion, 1(Parents are Married), 1(Immigrant Father), 1(Immigrant Mother),
Indicators for Father’s Occupation Group, Indicators for Mother’s Occupation Group,
Home Environment Indicators (1st Principal Component),
Parental School Involvement Indicators (1st Principal Component)

Parental Expectations

Mother’s Desired Yrs. of Ed., Father’s Desired Yrs. of Ed.

School Characteristics (Treated as elements of Xs*)

School Pct. Minority, School Pct. Free/Reduced Price Lunch,
School Pct. LEP, School Pct. Special Ed.,
School Pct. Remedial Reading, School Pct. Remedial Math,
Frequency of Fights (Administrator’s Impression)

School Characteristics (Treated as elements of Z2s)

1(Catholic School), 1(Private Non-Catholic School), Total School Enrollment,
Student-Teacher Ratio, Pct. Teacher Turnover Since Last Year, Log(Min. Teacher Salary)
Pct. of Teachers w/ Master’s Degrees or More, Pct. of Teachers w/Certification,
School Teacher Pct. Minority, 1(Minimum Competency Test Exists),
Teacher Evaluation Mechanism Indicators (1st Principal Component),
Teacher Incentives Indicators (1st Principal Component) School Security Policy Indicators (1st and 2nd Principal Components)
School Security Implementation (ELS Facility Inspection, 1st and 2nd Principal Components)
School Environment Indicators (ELS Facility Inspection, 1st and 2nd Principal Components),
School Facilities Indicators (Administrator Survey, 1st and 2nd Principal Components),
Teacher Access to Technology Indicators (Administrator Survey, 1st Principal Component),

Neighborhood Characteristics

Urbanicity Indicators (Detailed), Indicators for U.S. Census Region
Neighborhood Crime Level Category (Sch. Administrator Survey)

*School characteristics treated as elements of Z1 are included to reduce measurement error in school sample averages of student char-
acteristics. They do not contribute to the estimated lower bound on the contribution of schools/neighbhorhoods to outcomes
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Table 13: Variables Included in Specifications Using
North Carolina Administrative Data

Student Characteristics

Female, Black, Hispanic, Asian

Student Ability

Math Standardized Score (Grades 7 & 8), Reading Standardized Score (Grades 7 & 8)
Designated Gifted Student (Math), Designated Gifted Student (Reading)

Student Behavior

Hrs./Wk. Spent on Homework (Indicator Variables),
Hrs./Wk. Spent on Leisure Reading (Indicator Variables)
Hrs./Wk. Spent Watching TV (Indicator Variables)

Family Background

Responding Parent Educational Attainment Category Indicator Variables
Ever Eligible for Free/Reduced Price Lunch
Currently Limited English Proficiency
Ever Limited English Proficiency

School Characteristics

Magnet School, Charter School, Student-Teacher Ratio,
Pct. Teacher Turnover Since Last Year
Pct. on College Prep. Track
Pct. of Teachers w/ Master’s Degrees or More
Average Pct. Daily Attendance,
School Teacher Pct. Highly Qualified
Total School Enrollment

Neighborhood Characteristics

Urbanicity Indicator Variables (12 Categories)

School averages of all individual-level variables are also included in each specification.
Classroom averages of all individual-level variables are also employed in some specifications.
See Section 10 for details.
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Table 14: Decomposition of Variance in Latent Index Determining High School Graduation for Baseline
and Full Specifications from Each Dataset: NC, NLS72, NELS88, and ELS2002

NC NELS gr8 ELS

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.915 0.919 0.830 0.836 0.874 0.881
V ar(Yi − Ys) (0.016) (0.015) (0.019) (0.017) (0.016) (0.016)

Observable Student-Level (Within): 0.124 0.213 0.162 0.292 0.134 0.221
V ar((Xi −Xs)B) (0.005) (0.006) (0.010) (0.015) (0.035) (0.037)

Unobservable Student-Level (Within) 0.791 0.706 0.668 0.543 0.740 0.660
V ar(vsi − vs) (0.014) (0.013) (0.019) (0.017) (0.030) (0.031)

Between School:
Total 0.085 0.081 0.170 0.164 0.126 0.119
V ar(Ys) (0.016) (0.015) (0.019) (0.017) (0.016) (0.016)

Observable Student-Level: 0.018 0.033 0.073 0.109 0.037 0.060
V ar(XsB) (0.002) (0.003) (0.009) (0.012) (0.005) (0.008)

Student-Level/
School-Level Covariance 0.016 0.010 0.025 0.007 0.025 0.006
2 ∗ Cov(XsB,XsG1 + Z2sG2) (0.003) (0.005) (0.019) (0.019) (0.010) (0.011)

School-Avg. Student-Level/
School Char. Covariance -0.017 -0.008 0.007 0.004 0.001 -0.002
2 ∗ Cov(XsG1, Z2sG2) (0.006) (0.004) (0.007) (0.005) (0.012) (0.012)

School-Avg. Student-Level 0.018 0.009 0.037 0.029 0.028 0.029
V ar(XsG1) (0.005) (0.004) (0.013) (0.007) (0.014) (0.012)

School Char. 0.018 0.012 0.011 0.006 0.025 0.024
V ar(Z2sG2) (0.008) (0.004) (0.019) (0.004) (0.012) (0.011)

Unobservable School-Level 0.031 0.026 0.017 0.010 0.010 0.001
V ar(vs) (0.007) (0.005) (0.007) (0.003) (0.002) (0.001)
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Table 15: Decomposition of Variance in Latent Index Determining Enrollment in a Four-Year College from
Each Dataset: NC, NLS72, NELS88, and ELS2002 (Baseline and Full Specifications)

NLS NELS gr8 ELS

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.857 0.857 0.776 0.774 0.785 0.791
V ar(Yis − Ys) (0.012) (0.012) (0.016) (0.017) (0.015) (0.014)

Observable Student-Level (Within): 0.176 0.354 0.192 0.316 0.184 0.330
V ar((Xsi −Xs)B) (0.029) (0.017) (0.010) (0.012) (0.016) (0.013)

Unobservable Student-Level (Within) 0.681 0.503 0.584 0.458 0.600 0.461
V ar(vsi − vs) (0.027) (0.015) (0.015) (0.013) (0.016) (0.012)

Between School:
Total 0.143 0.143 0.224 0.226 0.215 0.209
V ar(Ys) (0.012) (0.012) (0.016) (0.017) (0.015) (0.014)

Observable Student-Level: 0.042 0.062 0.010 0.143 0.079 0.127
V ar(XsB) (0.004) (0.006) (0.010) (0.012) (0.007) (0.009)

Student-Level/
School-Level Covariance 0.037 0.032 0.057 0.027 0.071 0.039
2 ∗ Cov(XsB,XsG1 + Z2sG2) (0.006) (0.008) (0.012) (0.014) (0.009) (0.011)

School-Avg. Student-Level/
School Char. Covariance 0.000 -0.002 0.004 0.005 -.003 -0.002
2 ∗ Cov(XsG1, Z2sG2) (0.004) (0.004) (0.005) (0.004) (0.008) (0.006)

School-Avg. Student-Level 0.026 0.020 0.023 0.021 0.022 0.015
V ar(XsG1) (0.006) (0.005) (0.005) (0.004) (0.006) (0.004)

School Char. 0.026 0.019 0.018 0.015 0.024 0.018
V ar(Z2sG2) (0.005) (0.004) (0.006) (0.005) (0.007) (0.006)

Unobservable School-Level 0.012 0.013 0.021 0.014 0.022 0.013
V ar(vs) (0.005) (0.005) (0.005) (0.004) (0.005) (0.003)
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Table 16: Decomposition of Variance in Years of Post-Secondary Education and Adult Log Wages using
NLS72 (Baseline and Full Specifications)

Yrs. Postsec. Ed.
Perm. Wages Perm. Wages

No Post-sec Ed. w/ Post-sec Ed.

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.904 0.904 0.837 0.834 0.829 0.829
V ar(Yis − Ys) (0.007) (0.008) (0.019) (0.017) (0.022) (0.021)

Observable Student-Level (Within): 0.154 0.280 0.140 0.174 0.212 0.224
V ar((Xsi −Xs)B) (0.007) (0.007) (0.010) (0.009) (0.011) (0.013)

Unobservable Student-Level (Within) 0.749 0.624 0.697 0.660 0.617 0.605
V ar(vsi − vs) (0.007) (0.008) (0.020) (0.019) (0.024) (0.025)

Between School:
Total 0.096 0.096 0.163 0.166 0.171 0.171
V ar(Ys) (0.007) (0.008) (0.019) (0.017) (0.022) (0.021)

Observable Student-Level: 0.041 0.058 0.045 0.055 0.061 0.065
V ar(XsB) (0.003) (0.004) (0.007) (0.008) (0.005) (0.005)

Student-Level/
School-Level Covariance 0.031 0.023 0.033 0.028 0.033 0.029
2 ∗ Cov(XsB,XsG1 + Z2sG2) (0.003) (0.006) (0.009) (0.011) (0.008) (0.009)

School-Avg. Student-Level/
School Char. Covariance 0.024 0.016 -0.002 0.001 -.003 0.000
2 ∗ Cov(XsG1, Z2sG2) (0.003) (0.003) (0.009) (0.010) (0.009) (0.009)

School-Avg. Student-Level 0.012 0.008 0.033 0.029 0.029 0.028
V ar(XsG1) (0.003) (0.002) (0.013) (0.010) (0.012) (0.011)

School Char. 0.017 0.010 0.039 0.041 0.039 0.040
V ar(Z2sG2) (0.002) (0.002) (0.010) (0.010) (0.011) (0.011)

Unobservable School-Level 0.005 0.004 0.014 0.011 0.011 0.009
V ar(vs) (0.003) (0.002) (0.012) (0.009) (0.018) (0.017)
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