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Abstract

Using a rich data set on Australian college admissions, we show that a non-negligible frac-

tion of applicants adopt strategies that are unambiguously dominated; however, the majority

of these ‘mistakes’ are payoff irrelevant. In a model where colleges rank applicants strictly,

we demonstrate that such strategic mistakes jeopardize the empirical analysis based on the

truth-telling hypothesis but not the one based on a weaker stable-matching assumption. Our

Monte Carlo simulations further illustrate this point and quantify the differences among the

methods in the estimation of preferences and in a hypothetical counterfactual analysis.
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1 Introduction

Strategy-proofness—or making it a dominant strategy for revealing one’s preferences truthfully—is

an important desideratum in market design. Not only does strategyproofness make it straightfor-

ward for a participant to act in one’s best interest, thus minimizing the scope for making mistakes;

but it also equalizes the playing field, for even an unsophisticated participant is protected from

others who may game the system. Further, it aids empirical research by making participants’

choices easy to interpret.
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However, this view has been challenged by a growing number of authors who find that strategic

mistakes are not uncommon even in strategy-proof environments. Laboratory experiments have

shown that a significant fraction of subjects do not report their preferences truthfully even in

strategy-proof mechanisms such as applicant-proposing deferred acceptance algorithm (DA) and

top-trading cycles (see, e.g., Chen and Sönmez, 2002). More alarmingly, similar problems occur in a

high-stake real-world context. In a study of admissions to Israeli graduate programs in psychology

(which uses DA), Hassidim, Romm, and Shorrer (2016) find that about 19% of applicants either did

not list scholarship position of the same program, or listed scholarship/non-scholarship positions

in a wrong order. Since a scholarship position is unambiguously preferred to a non-scholarship

position of the same program, such behavior constitutes a dominated strategy. In a similar vein,

Shorrer and Sóvágó (2017) find that a large fraction of the applicants employ a dominated strategy

in the Hungarian college-admissions process which uses a strategically simple mechanism. Also

using data generated by DA, Rees-Jones (2016) reports that 17% of the 579 surveyed US medical

seniors indicate misrepresenting their preferences in the National Resident Matching Program, and

Chen and Pereyra (2015) document similar evidence in Mexico City’s high school choice.

These findings raise questions on prominent mechanisms used widely in practice1 and their

empirical assessment. At the same time, a mere presence of “mistakes” is not enough to draw

conclusions on the matters. If mistakes were made only when they would have made little difference

in the outcome, then the full rationality hypothesis may be a reasonable proxy for understanding

a mechanism. One would thus require a deeper understanding of what the nature of mistakes is

and what circumstances led to those mistakes.

Toward this end, we first study a field data set from Victorian Tertiary Admissions Centre

(VTAC), a central clearinghouse that organizes the match for applicants in tertiary admissions

in Victoria, Australia. The semi-centralized mechanism VTAC uses for assigning applicants to

tertiary “courses” (which are similar to college-major-tuition triple in the US) resembles a serial

dictatorship with the serial order given by the nation-wide test score, called Equivalent National

Tertiary Entrance Rank (ENTER), except for submittable rank-ordered lists (ROLs) being trun-

cated to 12 and a few other features (that will be explained later). Similar to Hassidim, Romm,

and Shorrer (2016), our study exploits the unique feature of the system that an applicant can

apply for a given college-major pair as either (i) a “full-fee” course (or FF course) which charges

full tuition; or (ii) a Commonwealth supported course (which we will refer to as “reduced-fee” or

RF course) which subsidizes about 50% of tuition; or both. For every college-major pair RF clearly

dominates FF course; hence ranking FF but not RF course of the same college-major pair in an

ROL that does not fill up the 12 slots—henceforth called a skip—is unambiguously a dominated

1Obviously strategy-proof mechanisms, as suggested by Li (2017), make it more transparent for participants to

play a dominant strategy. But this more demanding requirement is often difficult to meet in practice (Ashlagi and

Gonczarowski, 2016). While the requirement is met in the case of a serial dictatorship under which participants

take turns to make a choice (see Li, 2017; Pycia and Troyan, 2016), the mechanism we study is not this version of

serial dictatorship.
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strategy.2

In the sample year of 2007, we find that 1,009 applicants skipped, which comprises 3.6% out of

total 27,922 applicants who ranked fewer than 12 courses, or 34% out of total 2,963 applicants who

listed at least one FF course. These figures are consistent with those documented in Hassidim,

Romm, and Shorrer (2016) and can be viewed as non-negligible. However, the vast majority of

these mistakes were not payoff relevant. Correcting the mistakes (i.e., listing the omitted reduced-

fee course) would have made a difference only for 14− 201 applicants out of 1,009 who skipped at

least one RF course, with the exact number depending on how they would have ranked them in

their ROLs (e.g., top of the ROLs or just ahead of the FF courses). In other words, payoff-relevant

mistakes comprise only 0.05–0.72% out of all applicants and 0.47–6.78% out of those who listed at

least one full-fee course with a reduced-fee counterpart.3

Our rich micro data set is well suited to investigate who made mistakes, whether the mis-

takes are payoff-relevant and what circumstances led to them. We find that applicants’ academic

ability (measured independently of ENTER) is negatively correlated with skips, suggesting that

misunderstanding the mechanism may play a role in making mistakes. However, even controlling

for the academic ability, ENTER is also negatively correlated with mistakes. This suggests that

applicants omit courses they are unlikely to be admitted; furthermore, we find no evidence that

omitting courses is a conscious attempt at gaming the system to receive a better match.

The individual characteristics correlated with payoff-relevant mistakes are very different. There

is no correlation with academic ability anymore, and there is a positive, rather than negative,

correlation with ENTER.

A unique feature of the Victorian system, which lets applicants to modify their submitted ROLs

over time, allows us to observe further differences between skips and payoff-relevant mistakes.

While the number of applicants who skip increases over time, the number of applicants who make

payoff relevant mistakes decreases. We further exploit the fact that we observe ROLs submitted

before and after the applicants receive their ENTER. We study applicants’ response to a “shock”:

a difference between the realized ENTER and the ENTER forecasted based on the ability test. A

larger difference, despite making an applicant eligible for a larger set of courses, leads to a reduction

in payoff-relevant mistakes. It has no effect on skips.

To the extent that mistakes do occur and some (small) fraction of them are payoff relevant, it

is important to understand the implications of mistakes for market design research. Of particular

interest is how mistakes—some of them payoff-relevant—affect our ability to recover the underlying

preferences of participants and to perform counterfactual analyses of new hypothetical market

designs. To study these questions, we first develop a theoretical model of applicants’ behavior in a

2As will be discussed in detail, ranking an FF course ahead of the RF version of the same college-major pair

need not be a dominated strategy in our empirical setting.
3These numbers are defined the same as in Hassidim, Romm, and Shorrer (2016), but are not directly comparable

to their results. In their environment, almost everyone applies to an “FF” course, while in ours only 10% do. One

directly comparable number is the fraction of applicants with a payoff-relevant mistake among these who skip. It

is between 1.39% and 19.92% in our data and between 2.18% and 7.29% in Hassidim, Romm, and Shorrer (2016).
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large matching market operated by a DA mechanism (of which serial dictatorship is a special case).

Colleges rank applicants by some score, and every applicant knows her own score before submitting

applications. In keeping with the empirical findings, we focus on an equilibrium concept—called

robust equilibrium—which allows applicants to make mistakes as long as they become virtually

payoff-irrelevant as the market size grows arbitrarily large.

We show that it is a robust equilibrium behavior for all except for a vanishing fraction of

applicants to submit ROLs that differ from their true preferences, conditional on applying at all.

In this equilibrium, applicants skip colleges at the top of their preferences order that they feel they

clearly stand no chance of getting and/or colleges at the bottom dominated by a college that they

feel they have a clear shot at. Such a behavior is supported as robust equilibrium behavior since

as the market grows large the sub-optimality of playing such a strategy disappears for all but a

vanishing fraction of applicants. If applicants behave according to our robustness concept, this

result implies that the observed ROLs need not reflect the applicants’ true preference orders. This

calls into question empirical identification method based on the hypothesis that applicants submit

true preferences as their ROLs in a DA mechanism.

We next show that, in any robust equilibrium, as the market grows large, almost all applicants

must be playing a stable response strategy, a strategy that guarantees admission to the most

preferred college among those that they could have gotten into had they submitted truthful ROLs.

This result implies that stable response is a valid identification restriction in a sufficiently large

market. While truthful reporting is stable response, a stable response need not involve truthful

ROL. Hence, this latter restriction is weaker. The two theoretical results provide the sense in

which the identification method based on truthful reporting is vulnerable to the types of mistakes

documented in the first part and at the same time the sense in which the identification method

based on a weaker stable-response strategy is relatively robust to them.

To gain quantitative insights, we perform a Monte Carlo simulation of college admissions in

which applicant’s preferences follow a multinomial logit model. We assume a serial dictatorship

mechanism with a pre-specified serial order. Even though this mechanism is strategy-proof, in

keeping with our empirical findings, we entertain alternative scenarios that vary in the extent and

frequencies in which applicants make mistakes. Specifically, the assumed behavior ranges from

truthful reporting (i.e., no mistakes), to behavior exhibiting varying degrees of payoff-irrelevant

skips, to ones exhibiting varying degrees of payoff-relevant mistakes. Under these alternative sce-

narios, we structurally estimate applicant preferences using truthful reporting and stable response

as two alternative identifying assumptions. In addition, to account for a certain degree of payoff-

relevant mistakes, we further propose a robust approach.

The estimation results highlight the bias-variance tradeoff: Estimation based on truthful re-

porting uses more information on revealed preferences of applicants and has a much lower variance

than the alternatives; however, a bias emerges in the estimation whenever there are some appli-

cants skipping, while the estimation based on stable response is immune to all payoff-irrelevant

skips. Even when there are some payoff-relevant mistakes, the biases in the estimation based on
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stable response are small, while those from the robust approach are even smaller. As expected,

the truthful-reporting assumption introduces downward biases in the estimators of college quality,

especially among popular or small colleges, because over-subscribed colleges are often skipped by

many applicants.

Given the bias-variance tradeoff between the two approaches, the truthful-reporting assumption

is obviously preferred whenever it is satisfied. Based on the nesting structure of the two restrictions,

we then adopt a statistical test similar to the Durbin-Wu-Hausman test. Indeed, our simulation

results show that the test has the correct size and reasonable statistical power when being used to

choose between the two approaches.

We further quantify the biases in a counterfactual analysis in which we implement a hypo-

thetical affirmative action policy helping disadvantaged applicants. In terms of predicting the

counterfactual matching outcome, estimates from truthful reporting perform worse than those

from stable responses when applicants make mistakes. When we evaluate the welfare effects of the

policy, the truthful-reporting assumption under-estimates the benefits to disadvantaged applicants

as well as the harm to others; stable response however predicts the effects close to true values.

The robust approach further improves upon the stable-response assumption. In addition, we also

evaluate another common approach to counterfactual analysis in market design research: holding

submitted ROLs constant across two policies. We show that it produces an even larger bias than

the truthful-reporting assumption.

Related Literature. It should be stressed that, in line with the tertiary admissions mechanism

in Victoria, colleges in our setting rank applicants strictly based on some score that are known by

applicants before applying. This feature is shared among numerous real-life centralized matching

markets, including college admissions in Chile, Hungary, Ireland, Norway, Spain, Taiwan, Tunisia,

and Turkey, as well as school choice in Finland, Ghana, Romania, Singapore, and Turkey (Fack,

Grenet, and He, 2017, Table 1).

The truthful-reporting assumption has been utilized in the literature using data to estimate

applicant preferences. With data from Ontario, Canada which employs a decentralized system with

applications being relayed by a platform, Drewes and Michael (2006) assume that students rank

programs truthfully when submitting the non-binding ROLs. With college admissions data from

Sweden’s centralized system, Hällsten (2010) adopts a rank-ordered logit model for preference

estimation under a version of the truthful-reporting assumption. Similarly, with data from the

centralized college admissions in Norway, Kirkebøen (2012) also imposes a version of the truthful-

reporting assumption but sometimes excludes from an applicant’s choice set every college program

at which the applicant does not meet the formal requirements or is below its previous-year cutoff.

Holding submitted ROLs constant across two policies is also a common approach to counterfac-

tual analysis in market design research, especially when the existing mechanism is strategy-proof.

Roth and Peranson (1999) use data from the National Resident Matching Program and simulate

matching outcomes under alternative market designs. Veski, Biró, Poder, and Lauri (2016) con-
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duct counterfactual analysis by simulating with data on kindergarten allocation in Estonia. It

should be noted that the magnitude of the bias of this approach depends crucially on the extent

to which the counterfactual policy will change applicant behavior. For instance, Combe, Tercieux,

and Terrier (2016) study teacher assignment in France which is centralized. Priority in teachers’

appointments to schools is based on a variety of criteria, from seniority to the duration of spousal

separation due to the previous assignment. They simulate the outcome of an alternative mecha-

nism with the data from the existing mechanism, with no change to priorities. As the alternative

policy is not dramatically different from the existing one, the assumption of the same ROLs being

submitted can be more plausible.

There is also an important and well-researched setting where “colleges” do not rank applicants

strictly before application and break ties with a lottery, for example, school choice program in

New York City (Abdulkadiroglu, Pathak, and Roth, 2009; Abdulkadiroglu, Agarwal, and Pathak,

Forthcoming). This setting is conceptually different and is not tackled in the present paper. Indeed,

a key ingredient of our proofs is that, for a given applicant, the probability of admission to some

colleges converge to zero as economy grows. When applicants are ranked by college according to

a post-application lottery, the probability of being admitted to a given college would be bounded

away from zero; hence our results would hold.

The rest of the paper is organized as follows. In Section 2, we study the frequency and nature of

strategic mistakes from the VTAC college admissions data. In Section 3, we explore the theoretical

implications of the findings for empirical identification methods. In Section 4, we report Monte

Carlo simulations performed on the alternative identification methods.

2 Strategic Mistakes in Australian College Admissions

2.1 Institutional Details and Data

We use the data for year 2007 from the Victorian Tertiary Admission Centre (VTAC), which is a

centralized clearinghouse for admissions to tertiary courses in Victoria. Applicants are required to

rank tertiary courses they want to be considered for; VTAC also collects academic and demographic

information about applicants.

The unit of admission in Victoria, a course, is a combination of (i) a tertiary institution; (ii)

a field of study which the applicant wants to pursue; and (iii) a tuition payment. A tertiary

institution may be either a university (including programs not granting bachelor degrees) or a

technical school. A field of study is roughly equivalent to a major in the US universities. Tuition

payments are made in full for full-fee (FF) courses or reduced to about a half for reduced-fee (RF)

courses. Tuition payments are set by the government; the median is about AUD9,000 (USD7,000)

per year. Applicants admitted by reduced-fee courses are able to take a subsidized loan to cover

the rest of the tuition payments. The normal duration of the program is three years. Apart from

tuition payments, there is no difference between FF and RF courses. There were 1899 majors in
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2007; 881 of them are offered in both options, FF and RF.

Applicants are required to submit their applications in the form of rank-order list (ROL),

along with other information, at the end of September. In mid-December, applicants receive their

Equivalent National Tertiary Entrance Ranks (ENTER), as a number between zero and 99.95 in

0.05 increments, which we will refer to as score throughout the paper. For applicant i, Scorei

is i’s rank and shows a percentage of applicants with scores below Scorei. For most applicants,

ENTER is the sole determinant of the admission. As ROLs are initially submitted before ENTER

is known, applicants have an opportunity to revise their ROL after the release of ENTER. Offers

are extended to the applicants in January-February. Applicants have about two weeks to accept

by enrolling in the course they are offered.

Once ROLs are finalized, courses rank applicants and transmit their admission offers to VTAC.

Using an applicant’s ROL, VTAC picks the highest-ranked course that has admitted the applicant,

one of each type (FF/RF), and transmits the offer(s) to the applicant. That is, if applicant’s ROL

contains both reduced-fee and full-fee courses, such an applicant may receive two offers, one of each

type. That feature means that ranking an FF course ahead of an RF course is not a dominated

strategy, as the list of RF courses is treated as separate from the list of FF courses.

When ranking applicants, courses follow a pre-specified, published set of rules. For the largest

category of applicants, the admission is based almost exclusively on their scores. We focus on

these applicants in the paper and refer to them as “V16” applicants, following the code assigned

to them by VTAC. These are the current high school students who follow the standard Victorian

curriculum. We refer to the median of the highest scores among all rejected applicants and the

lowest scores among all accepted applicants as a cutoff of the course.4

The number of courses that an applicant can list at most 12. The applicants who exhaust the

length of their ROLs may be forced to omit some courses that they find desirable; hence we focus

only on these who list fewer than 12 courses, who constitute 75% of all applicants.

Out of 27,992 V16 applicants who list fewer than 12 courses; below we refer to the collection of

these applicants as “full sample.” 24,666 applicants have ranked at least one major that offers both

RF and FF courses. 2,915 applicants have ranked at least one FF course and all these applicants

have also ranked at least one major offering RF and FF courses; we call them “FF subsample”.

2.2 Skips and Payoff-Relevant Mistakes

If an applicant lists a FF course but does not list the corresponding RF course, we say that

applicant “skips” RF course. Even if an applicant skips RF course, the skip may have no effect

on the applicants’ assignment for two reasons. First, the applicant’s score may be below the

course cutoff, and the course is not feasible for the applicant. Second, the applicant may have

been assigned to a more desirable course than the one skipped. When the skip leads to a change

in applicant’s assignment, we say that the applicant makes a “payoff-relevant mistake”. We will

4See Appendix A for details on course selection, the other categories of applicants and the definition of a cutoff.
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demonstrate that most of the skips applicants make are not payoff-relevant mistakes.

As we do not know where in the applicant’s ROL a skipped course should be, we report the

lower and upper bounds of payoff-relevant mistakes. To calculate the lower (upper) bound, we

assume that the skipped RF course is less (more) desirable than any RF course listed in the

applicant’s ROL.5

In Table 1 we report the number of applicants that make at least one mistake of skipping a

course and the number of applicants for whom skipping a course becomes a payoff-relevant mistake

at least once, using both upper and lower bound definitions. The table suggests that, for most

applicants who skip, a skip is not a payoff-relevant mistake; and that the fraction of these with

payoff-relevant mistakes is less than one percent of all applicants, with either bounds.

Table 1: Skips and Mistakes among V16 Applicants Listing Fewer than 12 Courses

Full sample FF subsample Skips
Payoff-relevant mistakes

Upper bound Lower bound

% Full sample 100.00 10.61 3.61 0.72 0.05

% FF subsample 100.00 34.05 6.78 0.47

% Skips 100.00 19.92 1.39

Total # of Applicants 27,922 2,963 1,009 201 14

Notes: ‘‘All” refers to all V16 applicants who list fewer than 12 courses in the 2007 college admissions. Among them, “FF listed”

are the applicants who list at least one full-fee course. “Skips” refers to the applicants who list a full-fee course but do not list the

corresponding reduced-fee course at least once. “Payoff-relevant mistakes” refers to the applicants who would have received a different

assignment if they had not skipped a reduced-fee course.

2.2.1 Correlation between Applicant’s Scores and Skips

Suppose that an applicant expects that course c’s cutoff will be above the applicant’s score; hence,

the applicant does not expect to be assigned to course c even if c is listed in the applicant’s ROL.

We call such a course subjectively infeasible for the applicant.6

Our leading hypothesis, denoted by H0, is that (i) applicants may omit subjectively infeasible

courses and (ii) there is no systematic pattern in omitting subjectively infeasible courses. In

particular, part (ii) means that the likelihood of omitting such a course is independent of the rank

of this course in the true preferences of the applicant.

Hypothesis H0 implies a negative correlation between the probability that an applicant skips

a course and applicant’s score. The lower the applicant’s score, the larger the set of courses with

cutoffs above it. As an applicant omits more courses that are subjectively infeasible, she is more

likely to omit a reduced-fee course that has a full-fee counterpart in her ROL. That is, she is more

likely to be identified as making a skip.

5See Appendix A for details on calculating the cutoffs and the bounds.
6We formally define the course feasibility later in the theory section. In this section, the subjective feasibility

is taken as the perception of an applicant and, therefore, is unobservable to a researcher.
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To investigate the relationship between score and skip, we estimate the following empirical

model:

Skipi × 100 = α + βScorei + Controlsi + εi, (1)

where Skipi = 1 if applicant i has made at least one skip and zero otherwise.7 We expect β to be

negative.

There are several alternative explanations for the negative relation between Scorei and Skipi:

H1: Applicants’ score is correlated with cognitive abilities. Those with higher cognitive abilities

are able to comprehend the mechanism better, reducing the probability of skipping.

H2: Skipping a course is an instance of an applicant’s misguided attempt to gain a better as-

signment from the mechanism. Specifically, applicants drop courses that are subjectively infeasible

from the top of their ROL, so that their feasible courses rank higher.

To test H1, we will use another measure student ability, different from scorei, as a control

variable. The important difference between H2 and H0 is where the skipped courses are located.

H2 requires that such courses are concentrated at the top of ROL, while H0 does not impose any

such restrictions, as subjectively infeasible courses can be anywhere in the ROL.

We report the results for model (1) in Table 2. The sample of all odd-numbered regressions are

V16 applicants who rank fewer than 12 courses; all even-numbered regressions exclude from this

sample the applicants who do not rank a FF course. Control variables include school fixed effects

and application demographics, e.g., applicants’ gender, median income (in logarithm) in the postal

code in which the applicant resides, citizenship status, region born, and language spoken at home.

The number of FF courses listed may have a “mechanical” effect on the number of skips. If FF

course is not listed, then no RF course can be skipped, by definition. Hence, the more are FF

courses listed, the larger are the opportunities for skipping. We include eleven dummy variables

that correspond to the number of full-fee courses listed by an applicant.

Columns (1) and (2) are baseline regressions showing the negative relation between skips and

scores.

To account for H1, we include the results of General Achievement Test (GAT). Although GAT

and Score (ENTER) are both correlated with applicant’s ability, GAT is not correlated with

applicant’s admission probabilities, as it is not used in admission decisions. Hence, it allows us

to control for applicant’s ability in the regressions. Furthermore, GAT is likely to be a better

measure of applicant’s ability to understand the mechanism used by VTAC. GAT is a test of

general knowledge and skills in written communication, mathematics, science and technology,

humanities, the arts and social sciences and is similar in content to the SAT/ACT tests used in

the U.S. It is designed to avoid testing specific content of classes applicants may take in high

school. This should be contrasted with Score, which is an aggregate of grades for a variety of

classes applicants take in high school. These classes may differ significantly among applicants with

7We use Skipi × 100 to make the results more readable. If we use Skipi instead, every estimate will be one

percent of the ones reported here.
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the same Score. The Score is the most similar to a Grade Point Average in the US system.8 The

generic and standardized nature of GAT likely makes it a better measure for a comprehension of

the mechanism, compared to Score.

When both GAT and Score are included in the regression, the coefficient on score shows how

much more likely, in percentage terms, an applicant with the same GAT, but with a different

admission probability (captured by Score), makes a skip. The results are reported in columns (3)

and (4) of Table 2. The coefficient on GAT is negative and significant, suggesting that H1 is valid

and the cognitive abilities may play a role in the explanation of mistakes. Yet, after controlling

for cognitive ability, Scorei continues be negatively related to Skipi, consistent with H0.

Regressions (5) and (6) in Table 2 control for high school fees. Victoria has a significant private

school system. These schools have both well-resourced career advising services and disproportion-

ately many applicants with higher scores. Thus, we include an interaction of applicant’s score

and an indicator that the applicant attends a school that charges more than AUD11,000 (approx.

USD8,000) in fees.9 Applicants from private schools respond to change in their scores more, but

the results for the overall population remain the same.

Table 2: Probability of Skipping a Reduced-Fee Course

(1) (2) (3) (4) (5) (6)

Score -0.06∗∗∗ -0.71∗∗∗ -0.04∗∗∗ -0.55∗∗∗ -0.04∗∗∗ -0.56∗∗∗

(0.01) (0.06) (0.01) (0.08) (0.01) (0.07)

GAT -0.05∗∗∗ -0.35∗∗∗ -0.04∗∗∗ -0.33∗∗∗

(0.01) (0.12) (0.01) (0.10)

School fees × Score -0.03∗∗∗ -0.05∗∗

(0.01) (0.02)

Other controls Yes Yes Yes Yes Yes Yes

# of Applicants 26,325 2,766 26,325 2,766 26,325 2,766

R2 0.37 0.29 0.37 0.30 0.36 0.17

Notes: The dependent variable in every regression is Skip × 100; Skip = 1 if at least one course is skipped, 0 otherwise. Columns

(1), (3), and (5) are for full sample and columns (2), (4), and (6) are for FF subsample of applicants with non-missing GAT results

and the information on the applicant’s high school. Other control variables include gender, postal code, median income (in logarithm),

citizenship status, region born, language spoken at home, high school fixed effects, and dummy variables for the number of full-fee

courses. Standard errors clustered at high school level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

To address H2, we exploit the difference in predictions of the location of skipped courses in

applicant’s ROL. As mentioned, H2 predicts that courses will be skipped from the top of a ROL,

while H0 does not place any such restriction.

8The assessment for each subject is standardized across schools, similarly to Advanced Placement exams in the

US. The assessments are then aggregated, using different weights, into applicant’s aggregate score. Using aggregate

score, a rank of each applicant is derived. We refer to this rank as a Score in this paper.
9We cannot include the dummy variable “School fees” alone, because of the inclusion of high school fixed effects

in all regressions.
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Consider two applicants, who are identical except that i skips and j does not. H2 generates

the following testable prediction.

(i) Suppose that H2 holds. As i drops high-cutoff courses from the top of i’s ROL and keeps the

bottom of the list the same, we expect that the cutoffs of top-ranked courses in i’s ROL will

be lower than the cutoffs of top-ranked courses in j’s ROL. The cutoffs for bottom-ranked

courses will be the same for both i and j.

(ii) Suppose that H2 does not hold and i skips courses from anywhere in i’ ROL. Then both the

cutoffs for both top-ranked and bottom-ranked courses in i’s list will be lower than these in

j’s list.

Based on these predictions, we use the following regression model to test H2:

Cutoffs top-ranked coursesi−Cutoffs bottom-ranked coursesi = γ+δSkipi+ζScorei+Controlsi+εi.

(2)

We expect the coefficient δ to be negative if H2 holds. The results are presented in Table 3. We

use three different definitions for Cutoffs top-ranked coursesi and Cutoffs bottom-ranked coursesi.

In regressions (1), (4) and (7), we take the difference between the cutoffs of the top-ranked and

the bottom-ranked courses for an individual applicant; in regressions (2), (5) and (8), we take the

difference between the average of the two highest-ranked and the average of two lowest-ranked

courses; and in (3), (6) and (9), we do the same with three courses. In regressions (1)–(6), we

restrict our attention to the applicants who list at least one FF course, and in (7)–(9), we use the

full sample. Finally, in (1)–(3) we only control on score and gender, while in (4)–(9) we control

for the length of ROL and use our standard battery of controls.

The table shows that the coefficient on skip is insignificant in any of the regressions, indicating

that there is no evidence that applicants eliminate high-cutoff courses from the top of their ROL.

Thus, there is no support for H2 that applicants attempt manipulations.

2.2.2 Payoff-relevant Mistakes

Our hypothesis that applicants skip courses that they deem infeasible for them does not explain

payoff-relevant mistakes. That is, unlike skips, which we expect to vary systematically with score,

payoff-relevant mistakes should be independent of score. In this section, we investigate the char-

acteristics of those who make payoff-relevant mistakes. We expect that those mistakes are random

and none of the coefficients are significant. Due to the sample size, we use the upper bound def-

inition of payoff-relevance: the mistake is considered to be payoff-relevant if an applicant skips

reduced-fee course and is eligible for that course.

Our empirical model is

Payoff-relevant Mistakei × 100 = θ + ιScorei + Controlsi + εi, (3)

where Payoff-relevant Mistakei = 1 if i’s skip is payoff-relevant, 0 otherwise.
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Table 3: Correlation between Skip and the Difference between Cutoffs of Top- and Bottom-Ranked

Courses

Dependent var. Diff. b/t Top & Bottom Diff. b/t Top 2 & Bottom 2 Diff. b/t Top 3 & Bottom 3

Sample FF Subsample Full FF Subsample Full FF Subsample Full

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Skip -1.38 0.06 0.31 -0.41 0.32 0.31 0.09 0.69 0.60

(1.11) (1.18) (0.97) (0.93) (1.00) (0.81) (1.02) (1.06) (0.90)

Score 0.08∗∗ 0.06∗ 0.13∗∗∗ 0.08∗∗∗ 0.07∗∗ 0.11∗∗∗ 0.07∗∗ 0.07∗∗ 0.09∗∗∗

(0.04) (0.04) (0.01) (0.03) (0.03) (0.01) (0.03) (0.03) (0.01)

Female -2.70∗∗ -2.55∗∗ -2.66∗∗∗ -3.15∗∗∗ -2.92∗∗∗ -2.45∗∗∗ -2.65∗∗ -2.30∗∗ -2.07∗∗∗

(1.20) (1.18) (0.38) (1.13) (1.12) (0.33) (1.10) (1.09) (0.32)

ROL Length 1.17∗∗∗ 1.04∗∗∗ 0.90∗∗∗ 0.97∗∗∗ 1.02∗∗∗ 1.04∗∗∗

(0.21) (0.06) (0.21) (0.06) (0.24) (0.08)

Other Controls No Yes Yes No Yes Yes No Yes Yes

# of Applicants 2,825 2,797 26,882 2,598 2,570 23,567 2,080 2,055 17,687

R2 0.18 0.21 0.06 0.18 0.21 0.07 0.25 0.28 0.07

Notes: The dependent variable of all regressions is the difference between the cutoffs of top- and bottom-ranked courses, but it varies

in the number of courses we consider. Columns (1)—(3) use the top- and the bottom-ranked courses; columns (4)—(6) use the top two

and the bottom two; and columns (7)—(9) use the top three and the bottom three courses. Columns (1), (2), (4), (5), (7), and (8)

use FF subsample and columns (3), (6) and (9) use full sample. Other controls include postal code income (in logarithm), citizenship

status, region born, language spoken at home, high school fixed effects, and dummy variables for the number of FF courses. Standard

errors clustered at high school level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

In Table 4 we present the results. Note that the two variables that have been significant

in regressions for skips, GAT and interaction of score and school fees, are no longer significant.

Combining the results for regression equations (1) and (3), reported in Tables 2 and 4 respectively,

it appears that while higher-cognitive-ability applicants, measured by GAT, are more successfully

to avoid payoff-irrelevant mistakes than others, lower-cognitive-ability applicants do not make

more payoff-relevant mistakes. Similarly, attending expensive private school is not correlated with

the likelihood of payoff-relevant mistake either. Another notable observation is that score now

has a positive and significant coefficient. This may be explained mechanically: applicants with

higher scores have more feasible RF courses, hence skipping a RF course is more likely to be

payoff-relevant.

2.2.3 Changes in ROL Over Time

To further test our hypothesis that skips are the outcomes of skipping infeasible courses, we

use an unusual feature of the Victorian centralized mechanism: a requirement that applicants

submit their “preliminary” ROL several months before the deadline of their final ROL and before

applicants learn their scores. If not changed, the preliminary ROL becomes final and is used for

the admissions. As a small effort is needed to change the ROL, we treat preliminary ROL as the
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Table 4: Probability of Making Payoff-Relevant Mistakes

Sub-sample including applicants who

All applicants List Full-Fee Course Skip

(1) (2) (3) (4) (5) (6)

Score 0.01∗∗∗ 0.01∗∗∗ 0.16∗∗∗ 0.19∗∗∗ 0.66∗∗∗ 0.61∗∗∗

(0.00) (0.00) (0.04) (0.04) (0.15) (0.15)

GAT 0.00 0.00 0.00 0.01 0.31 0.28

(0.01) (0.01) (0.06) (0.06) (0.19) (0.19)

School fees × Score 0.01 -0.11∗ 0.22

(0.01) (0.06) (0.27)

Other controls Yes Yes Yes Yes Yes Yes

# of Applicants 26,325 26,325 2,766 2,766 947 947

R2 0.14 0.14 0.25 0.25 0.48 0.48

Notes: The dependent variable is equal to 100 if an applicant makes at least one payoff-relevant mistake, and 0 otherwise. Columns (1)

and (2) are based on full sample and columns (3) and (4) are based on FF sample of applicants with GAT results and the information

on the applicant’s high school. Columns (5) and (6) include only these applicants from full sample who make at least one skip. Other

control variables include gender, postal code income (in logarithm), citizenship status, region born, language spoken at home, high school

fixed effects and dummy variables for the number of full-fee courses. Standard errors clustered at high school level are in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

best estimate of a final ROL that an applicant would submit, given the information the applicant

has at the time.

There are two types of information that an applicant may obtain between submissions of the

preliminary and the final ROLs. First, the applicant learns about the courses and the mechanism.

A better understanding of the mechanism may lead to decrease in the number of mistakes (both

skips and payoff-relevant ones). Second, the applicant learns his or her score. As the applicant

learns score, it becomes more clear to him or her which courses are infeasible. That may increase

the number of skips, but will not necessarily affect the number of payoff-relevant mistakes. With

two types of additional information, we may see either an increase or a decrease in skips from the

preliminary to the final ROL, but we must see the decrease in mistakes. We test this conjecture

using two empirical models:

∆(#Skipsi) = τ s +Demeaned Controlsi + εi, (4)

∆(#Payoff-relevant Mistakesi) = τm +Demeaned Controlsi + εi, (5)

where ∆(#Skipsi) is the differences between the number of skips in the final and the preliminary

ROLs and ∆(#Payoff-relevant Mistakesi) is the analogous difference for payoff-relevant mistakes.

The control variables are been demeaned, and therefore the constants, τ s and τm, capture the

average changes over time. According to our hypothesis, the constant τ s in model (4) could be

either positive or negative but the constant τm in model (5) must be negative.

In Table 5 we present the results. Odd-numbered regressions are for payoff-relevant mistakes

and even-numbered regressions are for skips. Columns (1) and (2) only control for gender and
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income. As the number of listed FF courses may have a mechanical effect on skips and mistakes,

we add these controls in columns (3) and (4). In all specifications for payoff-relevant mistakes

(1 and 3), the constant is negative and significant, implying that the number of payoff-relevant

mistakes decreases, as we predict. In contrast, the effect of the revision of ROL on skips (columns

2 and 4) is positively significant.

Table 5: Skips and Payoff-Relevant Mistakes: Changes over Time

#Mistakes #Skips #Mistakes #Skips

(1) (2) (3) (4)

Constant -0.12∗∗ 1.02∗∗∗ -0.18∗∗∗ 0.70∗∗∗

(0.05) (0.14) (0.05) (0.11)

Female, demeaned 0.21 1.04∗∗ 0.10 0.47

(0.18) (0.51) (0.17) (0.40)

Change in # FF courses 8.32∗∗∗ 43.55∗∗∗

(1.21) (2.76)

# of Applicants 27654 27654 27654 27654

R2 0.02 0.04 0.13 0.42

Notes: ‘‘Mistake” means a payoff-relevant mistake. “FF courses” means full-fee courses. The dependent variable in regression (1)

and (3) is the difference in the number of payoff-relevant mistakes between the final ROL and the preliminary (November) ROL. The

dependent variable in columns (2) and (4) is the difference in the number of skips between the final ROL and the preliminary ROL.

The full sample is used. Female and ln(Income) are demeaned. There are dummy variables for region born, language spoken, and

citizenship status; over 89% of the sample belongs to corresponding reference values. Controls for high school fixed effects are also

included. Standard errors clustered at high school level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Finally, we investigate the response of applicants to an unexpectedly high or low score. Our

main independent variable is a shock, which is defined as the difference between realized and

expected scores, where the expected score is calculated using GAT (see Appendix A.3 for the

definition of expected score). We then investigate the change in the number of instances of skips

and payoff-relevant mistakes using the following models:

∆(#Skipsi) = φs + χsShocki +Demeaned Controlsi + εi (6)

∆(#Payoff relevant Mistakesi) = φm + χmShocki +Demeaned Controlsi + εi. (7)

We report results in Table 6. Regressions (1) and (3) are for payoff-relevant mistakes, and

regressions (2) and (4) are for skips. Control variables are gender and income in regressions (1)

and (2), with added control for the change in the number of full-fee courses. The results do not

change if we include more control variables. Note that, mechanically, if applicants do not change

their ROLs, a positive shock increase the probability that a skip becomes a payoff-relevant mistake.

The table shows that the number of payoff-relevant mistakes decreases with a positive shock,

implying that the skips which could potentially become payoff-relevant mistakes are eliminated by

the applicants. At the same, there is no significant effect on the number of skips, suggesting that

applicants focus on the payoff-relevant part of their ROL following a shock.
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Table 6: Effects of Shocks to Applicants Scores on Payoff-Relevant Mistakes and Skips

#Mistakes #Skips #Mistakes #Skips

(1) (2) (3) (4)

Shock to Score/100 -1.78∗∗∗ -2.23 -1.36∗∗ -0.06

(0.68) (2.20) (0.60) (1.65)

Female, demeaned 0.25 1.09∗∗ 0.14 0.47

(0.18) (0.52) (0.17) (0.40)

Change in # FF courses 8.32∗∗∗ 43.55∗∗∗

(1.21) (2.76)

# of Applicants 27637 27637 27637 27637

R2 0.02 0.04 0.13 0.41

Notes: ‘‘Mistake” means a payoff-relevant mistake. “FF courses” means full-fee courses. The dependent variable in regression (1)

and (3) is the difference in the number of payoff-relevant mistakes between the final ROL and the preliminary (November) ROL. The

dependent variable in regressions (2) and (4) is the difference in the number of skips between the final ROL and the preliminary ROL.

Shock to Score is the difference between realized and expected scores. The full sample of applicants with GAT is used. Other control

variables are demeaned gender and postal code income (in logarithm) as well as dummy variables for region born, language spoken, and

citizenship status. Standard errors clustered at high school level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. ∗∗∗ p < 0.01.

2.2.4 Enrollment Decisions

We conclude our empirical analysis by investigating the consequences of skips and payoff-relevant

mistakes on the applicants. In Table 7 we report the results for the following three empirical

models:

Enrolli = ψe + ωemPayoff-relevant Mistakei + ωesSkipi + Controlsi + εi (8)

Deferi = ψd + ωdmPayoff-relevant Mistakei + ωdsSkipi + Controlsi + εi (9)

Rejecti = ψr + ωrmPayoff-relevant Mistakei + ωrsSkipi + Controlsi + εi (10)

We observe that making a payoff-relevant mistake significantly decreases the probability of

enrolling in the course and significantly increases the probability of deferring. Skips have similar,

but much smaller, effect.

3 Theoretical Implications of Strategic Mistakes

The preceding analysis suggests that applicants tend to make mistakes but only a small percentage

of them are payoff relevant. In this section, we explore the implications of these findings for the

identification methods that are commonly employed in the empirical studies of school assignment.

Specifically we consider a large matching market operated by the Gale and Shapley’s deferred

acceptance algorithm (Gale and Shapley, 1962), and adopt an equilibrium concept that permits

participants to make mistakes as long as they become virtually payoff-irrelevant as the market size
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Table 7: Strategic Mistakes and Enrollment Decision

Enroll Defer Reject

(1) (2) (3)

Payoff-relevant Mistake -15.75∗∗∗ 13.06∗∗∗ 2.69

(3.81) (3.34) (2.94)

Skip -4.07∗∗ 4.76∗∗∗ -0.69

(1.99) (1.57) (1.73)

Score 0.38∗∗∗ 0.12∗∗∗ -0.51∗∗∗

(0.02) (0.01) (0.02)

Other controls Yes Yes Yes

# of Applicants 23774 23774 23774

R2 0.17 0.13 0.18

Notes: The dependent variable in column (1) is equal to 100 if an applicant enrolls at the assigned course; in (2) is equal to 1 if an

applicant defers enrollment; in (3) is equal to 1 if an applicant rejects the assigned course. Every applicant who makes a payoff-relevant

mistake also makes a skip; hence the coefficient on payoff-relevant mistakes is its marginal effect. The full sample of applicants who

enroll/defer/reject one of the offered courses is used; that is, it excludes all applicants who received an offer from any irregular process.

Control variables include high school fixed effects, gender, postal code income (in logarithm), citizenship status, region born, language

spoken at home, being assigned to full-fee course, the number of full-fee courses in ROL, ROL length, and the rank of offered course in

ROL. Standard errors clustered at high school level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

grows arbitrarily large.10

3.1 Primitives

We begin with Azevedo and Leshno (2016) (in short AL) as our modeling benchmark. A (generic)

economy consists of a finite set of courses, or colleges, C = {c1, ..., cC} and a set of applicants.

Each applicant has a type θ = (u, s), where u = (u1, ..., uC) ∈ [u, u]C is a vector of von-Neumann

Morgenstern utilities of attending colleges for some u ≤ 0 < u, and s = (s1, ..., sC) ∈ [0, 1]C is

a vector of scores representing the colleges’ preferences or applicants priorities at colleges, with

an applicant with a higher score having a higher priority at a college. A vector u induces an

ordinal preferences over colleges, denoted by a rank-ordered list (ROL) of “acceptable” colleges,

ρ(u), of length 0 ≤ ` ≤ C.11 Assuming that an applicant has an outside option of zero payoff,

the model allows for the possibility that applicants may find some colleges unacceptable. Let

Θ = [u, u]C × [0, 1]C denote the set of applicant types. One special case is serial dictatorship in

10There is a growing number of work on large matching markets, including Pittel (1989), Immorlica and Mahdian

(2005), Kojima and Pathak (2009), Lee (2014), Lee and Yariv (2014), Ashlagi, Kanoria, and Leshno (forthcoming),

Che and Tercieux (2015a), Che and Tercieux (2015b), Abdulkadiroglu, Che, and Yasuda (2015), Che and Kojima

(2010), Liu and Pycia (2011), Azevedo and Leshno (2016), Azevedo and Hatfield (2012) and Che, Kim, and Kojima

(2013). The current work differs largely from these papers because of the solution concept that we adopt and the

issue we focus on here.
11In case of a tie, ρ(u) produces a ranking by breaking the tie in some arbitrary (but exogenous) way. Since we

shall assume that the distribution of the types is atomless, the tie-breaking becomes immaterial.
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which colleges’ preferences for applicants are given by a single score. Australian tertiary admissions

can be seen as a case of serial dictatorship. We shall incorporate this case by an additional

restriction that the scores of each applicant satisfy s1 = ... = sC .

A continuum economy consists of the same finite set of colleges and a unit mass of applicants

with type θ ∈ Θ and is given by E = [η, S], where η is a probability measure over Θ representing

the distribution of applicant population over types, and masses of seats S = (S1, ..., SC) available

at the colleges, where Si > 0 and
∑C

i=1 S1 < 1. We assume that η admits continuous density which

is positive in the interior of its support (i.e., full support). In the case of serial dictatorship, this

assumption holds with a reduced dimensionality of support; applicants’ scores are one-dimensional

number in [0, 1]. The atomlessness ensures that indifferences either in applicant preferences or

in college preference arises only for a measure 0 set of applicants.12 The full-support assumption

means that both applicants’ and colleges’ preferences are rich (except for the case of serial dic-

tatorship). A matching is defined as a mapping µ : C ∪ Θ → 2Θ ∪ (C ∪ Θ) satisfying the usual

two-sidedness and consistency requirements as well as “open on the right” defined in AL (see p.

1241). A stable matching is also defined in the usual way satisfying individual rationality and

no-blocking.13

According to AL, a stable matching is characterized via market-clearing cutoffs, P = (P1, ..., PC) ∈
[0, 1]C , satisfying demand-supply condition: Dc(P ) ≤ Sc, with equality in case of Pc > 0, for each

c ∈ C, where the demand Dc(P ) for college c is given by the measure of applicants whose favorite

college among all feasible ones (i.e., with cutoffs less than his scores) is c. Specifically, given the

market-clearing cutoffs P , the associated stable matching assigns those who demand c at P to col-

lege c. Given the full-support assumption, Theorem 1-i of AL guarantees a unique market clearing

price P ∗ and a unique stable matching µ∗. Given the continuous density assumption, D(·) is C1

and ∂D(P ∗) is invertible.

With the continuum economy E serving as a benchmark, we are interested in a sequence of

finite random economies approximating E in the limit. Specifically, let F k = [ηk, Sk] be a k-random

economy, which consists of k applicants each with type θ drawn independently according to η, and

the vector Sk = [k · S]/k of capacity per applicant, where [x] is the vector of integers nearest to x

(with a rounding down in case of a tie). A matching is defined in the usual way.

Consider a sequence of k-random economies {F k}. We consider an applicant proposing DA

being employed to assign applicants to colleges. We assume that colleges are acting passively

reporting their preferences and capacities truthfully.14 We are interested in characterizing an

12At the same time, atomlessness rules out the environments where some applicants are ranked the same at some

schools and lotteries are used to break ties, such as NYC’s high school admissions (Abdulkadiroglu, Agarwal, and

Pathak, Forthcoming).
13Individual rationally requires that no participant (an applicant or a college) is assigned a partner that is not

acceptable. No blocking means that no applicant-college pair exists such that the applicant prefers the college over

her assignment and the college has either a vacant position or admits an applicant it ranks below an applicant in

the applicant-college pair.
14In the specific context of VTAC mechanism, the common preferences make this an ex post equilibrium strategy.
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equilibrium behavior of the applicants in the DA. In one sense, this is trivial: since DA is stratetgy-

proof, it is a weak dominant strategy for each player to rank order all acceptable colleges (i.e., with

payoff uc ≥ 0) according to true preference order. We call such a strategy truthful-reporting

strategy (TRS).15 We are, however, interested in a more robust solution concept allowing for

any approximately-optimal behavior. We assume that each applicant observes his own type θ but

not the types of other applicants; as usual, all applicants understand as common knowledge the

structure of the game. Given this, the DA induces a Bayesian game in which the strategy of each

applicant specifies a distribution over ROLs of length no greater than C as a function of his type

θ.

In any game (either the limit or the k-random economy), applicant i’s Bayesian strategy is a

measurable function σi : Θ → ∆(R), where R is the set of all possible ROLs an applicant can

submit. Note that the strategies can be asymmetric; i.e., we do not restrict attention to symmetric

equilibria. In any economy (either continuum or finite), a profile of strategies by students induce

cutoffs P ∈ [0, 1]C . We say a college c is feasible to an applicant if his score at c is no less than

Pc. And we say an applicant demands college c if c is feasible and he ranks c in his ROL ahead of

any other feasible colleges.

In the sequel, we are interested in the following solution concept:

Definition 1. For a sequence {F k} of k-random economies, the associated sequence {(σk1≤i≤k)}k
of strategy profiles is said to be a robust equilibrium if, for any ε > 0, there exists K ∈ N
such that for k > K, {(σk1≤i≤k)}k is an interim ε-Bayes Nash equilibrium—namely, for i, σki gives

applicant i of each type θ a payoff within ε of the highest possible (i.e., supremum) payoff he can

get by using any strategy when all the others employ σk−i.

This solution concept is arguably more sensible than the exact Bayesian Nash equilibrium, if

for a variety of reasons market participants may not play their best response exactly, but they

do approximately in the sense of not making mistakes of significant payoff consequences, in a

sufficiently large economy.

Indeed, without relaxing a solution concept in some way, one cannot explain the kind of de-

parture from the dominant strategy observed in the preceding section. To see this, recall that in

the continuum economy, any stable matching, and hence the outcome of DA mechanism, gives

rise to cutoffs that are degenerate. This means that the students participating in the DA face no

uncertainty with regard to the feasible set of colleges. Hence, one can easily construct a dominated

strategy that can do just as well as a dominant strategy—namely the truthful rank-ordering of

colleges. For instance, a student can list only one college—the most preferred among those whose

cutoffs are below his/her scores—and do just as well as reporting her true ROL. But such a strat-

egy will not be optimal for any finite economy, no matter how large it is. In a finite economy, the

See Che and Koh (2016).
15By this definition, TRS does not allow applicants to rank unacceptable colleges, which reduces the multiplicity

of equilibria and thus works in favor of TRS. However, applying unacceptable options can happen in real-life

matching markets, as documented in He (2017).
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cutoffs are not degenerate, so any strategy departing from the truth-telling will result in payoff

loss with positive probability. Hence, in order to explain a behavior that departs from a dominant

strategy, one must relax exact optimality on the agents’ behavior. At the same time, a solution

concept cannot be arbitrary, so some discipline must be placed on the extent to which payoff loss

is tolerated. The robust equilibrium concept fulfills these requirements: it allows participants to

make some mistakes but insists that the payoff loss from the mistakes disappear as the market

grows arbitrarily large.

3.2 Analysis of Robust Equilibria

Robust equilibria require that participants should make no mistakes with any real payoff conse-

quences as the market gets large. Does this mean that a large fraction of agents must report

truthfully in a strategy-proof mechanism? We show below that this need not be the case. Specif-

ically, we will construct strategies that deviate from TRS and yet do not entail significant payoff

loss in a large economy.

To begin, recall P ∗ (the unique market clearing cutoffs for the limit continuum economy). We

define stable-response strategy (SRS) to be any strategy that demands his most preferred

feasible college given P ∗ (i.e., he ranks that colleges ahead of all other feasible colleges). The set of

SRSs is typically large. For example, suppose C = {1, 2, 3}, and colleges 2 and 3 are feasible, and

an applicant prefers 2 to 3. Then, 7 ROLs—1-2-3, 2-3-1, 2-1-3, 1-2, 2-1, 2-3, 2—constitute his SRSs

out of 10 possible ROLs he can choose from. Formally, if an applicant has ` ≤ C feasible colleges,

then the number of SRSs is
∑

a≤`−1,b≤C−`
(
a+b+1
b

)
a!b!. For each type θ = (u, s) with ρ(u) 6= ∅ (i.e.,

with at least one acceptable college), there exists at least one SRS that is untruthful.16

For the next result, we construct such a strategy. To begin, let r̂ : R × [0, 1]C → R be a

transformation function that maps a preference order ρ ∈ R to an ROL with the property that:

(i) r̂(ρ, s) 6= ρ for all ρ 6= ∅ (i.e., untruthful), and r̂(∅, s) = ∅, and (ii) r̂(ρ, s) ranks the most

preferred feasible college ahead of all other feasible colleges for each ρ 6= ∅ (where feasibility is

defined given P ∗). The existence of such a strategy is established above. We then define an SRS

R̂ : Θ→ R, given by R̂(u, s) := r̂(ρ(u), s), for all θ = (u, s).17 Let

Θδ := {(u, s) ∈ Θ|∃i s.t. |si − P ∗i | ≤ δ}

be the set of types that have a score that is δ-close to its market clearing cutoff for the continuum

economy.

Theorem 1. Fix any arbitrarily small (δ, γ) ∈ (0, 1)2. It is a robust equilibrium for all applicants

with types θ ∈ Θδ to play TRS, and for all applicants with types θ 6∈ Θδ to randomize between TRS

with probability γ and untruthful SRS R̂(θ) with probability 1− γ in each k-random economy.

16If an applicant’s most favorite college is infeasible, she can drop that college. If is feasible, then she can drop

an acceptable college below or add an unacceptable college below, whichever exists.
17Note this SRS is constructed via the transformation function r̂. In principle, an SRS can be defined without

such a transformation function, although this particular construction simplifies the proof below.
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The intuition for Theorem 1 rests on the observation that the uncertainty on cutoffs, and thus

feasible set of colleges, vanishes in a sufficiently large economy, which eliminates the payoff-risk of

playing non-TRS. Specifically, the sequence of strategy profiles we construct satisfies two properties:

(a) prescribes a large fraction of agents to deviate from TRS with a large enough probability and

yet (b) it gives rise to cutoffs P ∗ in the limit continuum economy, namely the cutoffs that would

prevail if all agents played TRS. That these two properties can be satisfied simultaneously is not

trivial and requires some care, since the cutoffs may change as students deviate from TRS. Indeed,

the feature that all agents play TRS with some small probability γ is designed to ensure that

the same unique stable matching obtains under the prescribed strategies. Given these facts, the

well-known limit theorem, due to Glivenko and Cantelli, implies that the (random) cutoffs for any

large economy generated by the i.i.d. sample of individuals are sufficiently concentrated around

P ∗ under the prescribed strategies that students whose scores are δ away from P ∗ will suffers very

little payoff loss from playing any SRS that deviates (possibly significantly) from TRS. Indeed, our

construction ensures that these are precisely the students who play SRS that deviate from TRS.

Since (δ, γ) is arbitrary, the following striking conclusion emerges.

Corollary 1. There exists a robust equilibrium in which each applicant whose TRS is a non-

empty list of colleges submits an untruthful ROL with probability arbitrarily close to one.

To the extent that a robust equilibrium is a reasonable solution concept, the result implies

that we should not be surprised to observe a non-negligible fraction of market participants making

“mistakes”—more precisely dominated strategies—even in a strategy-proof environment. It also

calls into question any empirical method relying on TRS—any particular strategy for that matter—

as an identifying restriction.

If strategic mistakes of the types observed in the preceding section undermine the prediction of

TRS, do they also undermine the stability of the outcome? This is an important question on two

accounts. If mistakes jeopardize stability in a significant way, then this may call into question the

rationale for DA, to the extent that mistakes do occur. If stability remains largely intact despite

the presence of mistakes, then they do not raise a fundamental concern.

Aside from the stability prediction, the question is important from an empirical identification

perspective. Stability has been an important identification assumption invoked by empirical re-

searchers for preference estimation in a number of contexts, e.g., in decentralized two-sided match-

ing (see, for surveys, Fox, 2009; Chiappori and Salanié, 2016) as well as centralized matching with

or without transfers (e.g., Fox and Bajari, 2013; Agarwal, 2015).

Our second theorem shows that strategic mistakes captured by robust equilibrium leaves the

stability property of DA largely unscathed.

Definition 2. For a sequence {F k} of k-random economies with DA matching, the associated

sequence {(σk1≤i≤k)}k of strategy profiles is said to be an asymptotically stable if, for any ε > 0,

there exists K ∈ N such that for k > K, with probability at least of 1− ε, at least a fraction 1− ε
of all applicants are assigned their most preferred feasible colleges given the equilibrium cutoffs P k.
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We call a sequence {(σk1≤i≤k)}k of strategy profiles regular if there exists some γ > 0 such that

the proportion of applicants playing TRS is least γ > 0.

Theorem 2. Any regular robust equilibrium is asymptotically stable.

3.3 Discussion

In our setting, colleges strictly rank applicants by some score and applicants know their scores

before playing the college admissions game. This ensures that the probability of an applicant

being accepted by a college is degenerate as the market grows. By imposing this condition, we

thus exclude school choice problems in which applicants are ranked by a lottery after they sub-

mit their ROLs (see Pathak, 2011, for a survey). The theorems above suggest that estimation

techniques developed for these settings that use truth-telling as an identifying assumption, such

as Abdulkadiroglu, Agarwal, and Pathak (Forthcoming), should not be applied in settings where

colleges rank applicants strictly and applicants can predict their ranking. The settings that satisfy

both conditions are common; they are typical in tertiary and selective school admissions, may be

used in assignments to comprehensive schools (where “score” may refer to an exam score, or to

a continuously measured distance from residence to school) and in centralized assignments where

interviews are conducted.

Furthermore, a number of papers perform welfare analysis using actual ROLs submitted by

the applicants who face a strategy-proof mechanism (Roth and Peranson, 1999; Combe, Tercieux,

and Terrier, 2016; Veski, Biró, Poder, and Lauri, 2016). They rely, explicitly or implicitly, on

the assumption that, if the mechanism is strategy-proof, applicants submit their true preferences.

Theorems above indicate that it does not need to be the case; furthermore, we demonstrate in the

next section that such an assumption can lead to a significant errors in evaluating welfare effects.

The comparison between stability and truthful-reporting strategies is also considered in Fack,

Grenet, and He (2017). They consider exact Bayesian Nash equilibrium and argue that the truthful-

reporting strategy may not be the unique equilibrium; it may not be an equilibrium at all if there

is an application cost. Yet, their approach does not explain the mistakes observed in our data.

Given that there is an uncertainty in cutoffs, it is suboptimal to rank an FF course and skip the

corresponding RF course. Skipping cannot be justified by an application cost either, because the

cost of ranking an RF course is plausibly zero in this scenario. In contrast, our Theorem 1 provides

a natural explanation for such mistakes.

A more significant difference between the two papers is manifested in Theorem 2. To show

that stability can be used as an identifying condition in empirical studies, Fack, Grenet, and He

(2017) show the existence of a sequence of finite random economies and the associated sequence

of Bayesian Nash equilibria leading to asymptotically stable matching outcomes. Their result,

however, does not rule out asymptotically unstable equilibrium outcomes even in a large market,

nor do they identify sufficient conditions for asymptotic stability. Going beyond mere existence,

our Theorem 2 shows that all regular robust equilibria are asymptotically stable; thus it further
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justifies the use of stability for identification. The proof is more challenging than in Fack, Grenet,

and He (2017) and uses different techniques.

Our Theorem 2 has a similar flavor to the main result of Deb and Kalai (2015). Theorem 1 of

Deb and Kalai implies that in a family of large games satisfying several continuity properties, any

Bayesian Nash equilibrium is approximately hindsight-stable18 —namely, as the number of players

increase, there is a vanishing fraction of players for whom the difference in utility between their

Bayesian Nash equilibrium and ex-post optimal actions is more than ε (holding the actions of other

players fixed). Despite the similarities, their theorem is not applicable in our setting. Specifically,

a crucial condition needed for their result is LC2: the effect that any player can unilaterally have

on an opponents payoff is uniformly bounded and decreases with the number of players in the

game. This condition does not hold in our setting, since, even in an arbitrarily large economy,

an applicant i may be displaced from a college because of a single change in a submitted ROL

by some other applicant. Indeed, instead of imposing continuity directly on the payoff function of

the applicants (which is not well justified in our setting), our result exploits continuity exhibited

by the aggregate demand functions generated by randomly sampling individuals from the same

distribution.19

4 Analysis with Monte Carlo Simulations

This section provides details on the Monte Carlo simulations that we perform to assess the im-

plications of our theoretical results. Section 4.1 specifies the model, Section 4.2 describes the

data generating processes, Section 4.3 presents the estimation and testing procedures, Section 4.4

discusses the estimation results, and, finally, Section 4.5 presents counterfactual analyses.

4.1 Model Specification

We consider an economy in which k = 1800 applicants compete for admission to C = 12 colleges.

The vector of college capacities is specified as follows:

{Sc}12
c=1 = {150, 75, 150, 150, 75, 150, 150, 75, 150, 150, 75, 150}.

Setting the total capacity of colleges (1500 seats) to be strictly smaller than the number of appli-

cants (1800) ensures that each college has a strictly positive cutoff in equilibrium.

18Despite similarity in the terminology, there is no direct connection between hindsight-stability and our stability.
19Similarly to Deb and Kalai, MacDiarmids’ inequality also plays a role in our argument, but its use, as well

as overall proof strategy, is quite different from theirs. In our case, the strategic interaction is occur via “cutoffs”

of colleges playing the role of market clearing prices. It is crucial for the uncertainty in the cutoffs to disappear

in a large market (so that any non-SRS strategy could lead to a discrete payoff loss). This requires the (random)

aggregate demand functions to converge in probability to a degenerate continuous function. The MacDiarmids’

inequality, along with Glivenko-Cantelli theorem, proves useful for this step.
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The economy is located in an area within a circle of radius 1 as in Figure C.1 (Appendix C)

which plots one simulation sample. The colleges (represented by big red dots) are evenly located

on a circle of radius 1/2 around the centroid; the applicants (represented by small blue dots) are

uniformly distributed across the area. The cartesian distance between applicant i and college c is

denoted by di,c.

Applicants are matched with colleges through a serial dictatorship. They are asked to submit a

rank-ordered list of colleges, and there is no limit on the number of choices to be ranked. Without

loss of generality, colleges have a priority structure such that applicant i is ranked higher by all

colleges than those with i′ < i. One may consider the order is determined by some test scores as

in Victoria, Australia. Moreover, the order is common knowledge the time of submitting ROL.20

To represent applicant preferences over colleges, we adopt a parsimonious random utility model

without outside option. As is traditional and more convenient in empirical analysis, we now let

the applicant utility functions take any value on the real line.21 With some abuse, we still use the

same notation for utility functions. That is, applicant i’s utility from being matched with college c

is specified as follows:

ui,c = β1 · c+ β2 · di,c + β3 · Ti · Ac + β4 · Smallc + εi,c,∀i and c, (11)

where β1 · c is college c’s “baseline” quality; di,c is the distance from applicant i’s residence to

college c; Ti = 1 or 0 is applicant i’ type (e.g., disadvantaged or not, or arts versus sciences); Ac = 1

or 0 is college c’s type (e.g., known for resources for disadvantaged applicants or art education);

Smallc = 1 if college c is small, 0 otherwise; and εi,c is a type-I extreme value, implying that the

variance of utility shocks is normalized.

The type of college c, Ac, is 1 if c is an odd number; otherwise, Ac = 0. The type of applicant i,

Ti, is 1 with a probability 2/3 among the lower ranked applicants (i ≤ 900); Ti = 0 for all i > 900.

This way, we may consider those with Ti = 1 as the disadvantaged.

The coefficients of interest are (β1, β2, β3, β4) which are fixed at (0.3,−1, 2, 0) in the simulations.

By this specification, Smallc does not affect applicant preference. The purpose of estimation is to

recover these coefficients and therefore the distribution of preferences.

4.2 Data Generating Processes

Each simulation sample contains an independent preference profile obtained by randomly drawing

{di,c, εi,c}c and Ti for all i from the distributions specified above. In all samples, applicant scores,

college capacities, and college types (Ac) are kept constant.

20Our theoretical model in Section 3 consider applicant scores to be private information. That is, every applicant

knows her own score but not others’, and therefore no one knows for sure the exact rank she has at a school. We

obtain similar simulation results if we allow scores to be private information.
21In the theoretical discussion, we restrict the utility functions to be in [u, u]. One can apply a monotonic

transformation to make them on the real line. It should be emphasized that we cannot apply the expected utility

theory with the transformed utility functions, and we do not.
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We first simulate the joint distribution of the 12 colleges’ admission cutoffs. The simulation lets

every applicant submit an ROL ranking all colleges truthfully. After running the serial dictatorship,

we calculate the admission cutoffs in each simulation sample. Figure C.2 in Appendix C shows

the marginal distribution of each college’s cutoff from the 1000 samples. Note that colleges with

smaller capacities tend to have higher cutoffs. For example, college 11, with 75 seats, in general

has the highest cutoff, although the highest baseline quality college is college 12, with 150 seats.

To generate data on applicant behaviors and matching outcomes for preference estimation, we

simulate another 200 samples with new independent draws of {di,c, εi,c}c and Ti for all i. These

samples are used for the following estimation and counterfactual analysis, and, in each of them,

we consider three types of data generating processes (DGPs) with different applicant strategies.

(i) TRS (truthful-reporting Strategy): Every applicant submits a rank-ordered list of 12

colleges according to her true preferences. Because everyone finds every college acceptable,

this is TRS as defined in our theoretical model (Section 3).22

(ii) IRR (Payoff Irrelevant Skips): A fraction of applicants skip colleges with which they are

never matched according to the simulated distribution of cutoffs. For a given applicant, a

skipped college can have a high (expected) cutoff and thus be “out of reach;” it may also be a

college that has a low cutoff, but the applicant is always accepted by one of her more-preferred

colleges. To specify the fraction of skippers, we first randomly choose about 21.4 percent of

the applicants to be never-skippers who always rank all colleges truthfully. Applicants with

Ti = 1 are more likely to skip: 95 percent of them are potential skippers (Table C.4), compared

with 70 percent of those with Ti = 0 (Table C.5). Among the potential skippers, we consider

three scenarios. In IRR1, around one third of them skip all the “never-matched” colleges;

IRR2 adds another one-third; and IRR3 lets all of them skip. When doing so, it is possible

that an applicant does not apply to any college, because some applicants are never matched.

We randomly choose a college for them, so that they submit one-college ROLs.

(iii) REL (Payoff Relevant Mistakes): In addition to IRR3, i.e., given all the potential

skippers have skipped the never-matched colleges, we now let them make payoff relevant

mistakes. That is, they skip some of the colleges that they have some chance of being matched

with according to the simulated distribution of cutoffs. Recall that the joint distribution of

cutoffs is only simulated once under the assumption that everyone is strictly truth-telling.

In each of the four DGPs, REL1-4, we specify a threshold matching probability, and the

potential skippers omit the colleges at which they have an admission probability lower than

the threshold. From REL1-4, the thresholds are 7.5, 15, 22.5, and 30 percent, respectively.

To summarize, for each of the 200 samples, we simulate the matching game 8 times: 1 (TRS

or truthful-reporting strategy) + 3 (IRR, or payoff-irrelevant skips) + 4 (REL, or payoff relevant

mistakes).

22This is equivalent to the definition of strict truth-telling in Fack, Grenet, and He (2017).
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It should be emphasized that the cutoff distribution, based on which an applicant makes a

decision, is not re-simulated in any of these DGPs: we always use the same distribution gener-

ated by the 1000 simulations with applicants reporting truthfully. The distribution of cutoffs does

not change with payoff irrelevant mistakes, so it is of no consequence in the IRR DGPs. There

are two reason for using the same cutoff distribution in the REL DGPs instead of a re-simulated

“equilibrium” cutoff distribution. The first is to ensure the consistency across them: if cutoff

distributions differ across DGPs, then an applicant who skips a college in, say, REL1 (where the

probability threshold for skipping a college is 7.5%), may not skip that same college in REL2.

Although the probability threshold increases to 15% in REL2, the applicant’s admission proba-

bility at that college can increase to above 15%, because a college cutoff may decrease in REL2.

Furthermore, if that college sometimes is the best feasible college for the applicant, an estimation

based on stability may improve from REL1 to REL2. Hence, with re-simulated cutoff distribu-

tions, there would be no natural order among REL1-REL4. Second, for an applicant to calculate

a cutoff distribution correctly, we need to assume that an applicant correctly predicts not only the

distribution of preferences, but also the joint distribution of preferences and mistakes. This is a

demanding assumption, especially because changes in cutoff distribution need not be monotonic

with mistakes, as explained above.

Tables 8 shows how applicants skip in the simulations. The reported percentages are averaged

over the 200 samples. Recall that an applicant does not make any (ex-post) payoff-relevant mistake

if she is matched with her favorite feasible college, as defined in Section 2. The percentage of

applicants who make payoff-relevant mistakes is presented in the second row of Table 8 and ranges

from 2% to 10% of the total population. Because every college is acceptable, it is a skip if an

applicant does not rank a college, also as defined in Section 2. Across the DGPs, 25–79% of

applicants make a skip; among this population of skipper, the fraction of applications making

payoff-relevant mistakes in the REL simulations is from 2.5% to 12.7%.

4.3 Identifying Assumptions and Estimation

With the simulated data at hand, the random utility model described by equation (11) is estimated

under three different identifying assumptions:

(i) WTT (Weak Truth-Telling). Naturally, one may start by a truth-telling assumption such

as TRS. However, in the absence of outside option, TRS implies that every applicant ranks

all available colleges. The fact that applicants rarely rank all available colleges motivates a

weaker version of truth-telling, following the literature. WTT, which can be considered as

a truncated version of TRS, entails two assumptions: (a) the observed number of choices

ranked in any ROL is exogenous to applicant preferences and (b) every applicant ranks her

top preferred colleges according to her preferences, although she may not rank all colleges.

The submitted ROLs specify a rank-ordered logit model that can be estimated by Maximum

Likelihood Estimation (MLE). We define this as the “WTT” estimator.
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Table 8: Skips and Mistakes in Monte Carlo Simulations (Percentage Points)

Scenarios: Data Generating Processes w/ Different Applicant Strategies

Truthful-Reporting Payoff Irrelevant Payoff Relevant

Strategy Skips Mistakes

TRS IRR1 IRR2 IRR3 REL1 REL2 REL3 REL4

WTT: Weak Truth-Tellinga 100 85 69 53 52 52 52 52

Matched w/ favorite feasible collegeb 100 100 100 100 98 95 93 90

Skippersc 0 25 53 79 79 79 79 79

By number of skips:

Skipping 11 colleges 0 17 37 55 67 70 73 74

Skipping 10 colleges 0 6 11 17 10 8 6 4

Skipping 9 colleges 0 2 4 6 1 1 0 0

Skipping 8 colleges 0 0 0 0 0 0 0 0

Skipping 7 colleges 0 0 0 0 0 0 0 0

Skipping 6 colleges 0 0 0 0 0 0 0 0

Skipping 5 colleges 0 0 0 0 0 0 0 0

Skipping 4 colleges 0 0 0 0 0 0 0 0

Skipping 3 colleges 0 0 0 0 0 0 0 0

Skipping 2 colleges 0 0 0 0 0 0 0 0

Skipping 1 college 0 0 0 0 0 0 0 0

TRS: Truthful-Reporting Strategyd 100 75 47 21 21 21 21 21

Reject WTT: Hausman Teste 5 10 60 100 97 95 91 87

Notes: This table presents the configurations of the eight data generating process (DGPs). Each entry is a percentage averaged over

the 200 simulation samples. In every sample, there are 1800 applicants competing for admissions to 12 colleges that have a total of

1500 seats. Tables C.4 and C.5 further show the breakdown by Ti.
aAn applicant is “weakly truth-telling” if she truthfully ranks

her top Ki (1 ≤ Ki ≤ 12) preferred colleges, where Ki is the observed number of colleges ranked by i. Omitted colleges are always

less-preferred than any ranked college. bA college is feasible to an applicant, if the applicant’s index (score) is higher than the college’s

ex-post admission cutoff. If an applicant is matched with her favorite feasible college, she cannot form a blocking pair with any college.
cGiven that every college is acceptable to all applicants and is potentially over-demanded, an applicant is a skipper if she does not rank

all colleges. d An applicant adopts the “truthful-reporting strategy” if she truthfully ranks all available colleges. eIn each DGP, this

row reports the percentage of samples that the WTT (weakly truth-telling) assumption is rejected at 5% level in favor of the stability

assumption. The test is based on the Durbin-Wu-Hausman test and discussed in detail in Section 4.3.

(ii) Stability. The assumption of stability implies that applicants are assigned their favorite

feasible college given the ex-post cutoffs. The random utility model can be estimated by

MLE based on a conditional logit model where each applicant’s choice set is restricted to the

ex-post feasible colleges and where the matched college is the favorite among all her feasible

colleges. If every applicant plays a stable response with respect to the cutoffs, this assumption

is (asymptotically) satisfied. We define this estimator as the “stability” estimator.

(iii) Robustness. When there are payoff-relevant mistakes, some applicants may not be matched

with their favorite feasible college. As a remedy, we propose a new approach called “robust-

ness”. We construct a hypothetical set of feasible colleges for each applicant by inflating the

cutoffs of all but her matched college. An applicant’s matched college is more likely to be

her favorite in the hypothetical set of feasible colleges, because the set now contains fewer

colleges. The estimation is similar to the stability estimator, except the modified feasible

sets. We call this the “robust” estimator.
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The formulation of likelihood function and estimation results from the three approaches are

discussed in detail in Appendix C. In Table 8, across the eight DGPs, the fraction of skippers

increases from zero (in TRS) to 79 percent in IRR3 and remains at the same level in REL1-4.

The WTT assumption is exactly satisfied only in TRS, and the fraction of applicants who are

weakly truth-telling decreases from 85 percent in IRR1 to 53 percent in IRR3, stabilizing around

52 percent in all REL DGPs. In contrast, stability is always satisfied in TRS and IRR1-3, while

the fraction of applicants that can form a blocking pair with some college increases from 2 percent

in REL1 to 10 percent in REL4.

To test WTT against stability, we construct a Durbin-Wu-Hausman-type test statistic from the

estimates of the WTT and stability approaches, following Fack, Grenet, and He (2017). Under the

null hypothesis, both WTT and stability are satisfied, while under the alternative only stability

holds. When all applicants, except the lowest ranked 17 percent, are matched, WTT implies

stability, but not the reverse. Therefore, if WTT is satisfied, the estimator based on WTT is

consistent and efficient, while the stability estimator is consistent but inefficient.

The last row of Table 8 shows both the size and the power of this test. When the null is true

(e.g., when DGP is TRS), it rejects the null at the desired rate, 5 percent. When the null is not

true (in IRR1–3), it rejects the null with a 10–100 percent probability. Notice that when there

are 47 percent of applicants (as in IRR3) violating the WTT assumption, we already have the 100

percent rejection rate of the null hypothesis.

In REL1-4, both WTT and stability are violated, while the latter is violated to a lesser extent.

The test is no longer valid, although it still rejects the null at high rates.

4.4 Estimation Results

We now compare the performance of the three estimators each of which is based a different iden-

tifying assumption. Our main comparison is on two dimensions. One is the bias in the estimates

of β1, which measures the average quality difference between a pair of colleges (c − 1, c), because

the utility function (equation 11) includes the term β1 · c. On the other dimension, we compare

the estimated ordinal preferences with the true ones. In particular, we calculate the estimated

preference order between Schools 10 and 11.

4.4.1 Bias-Variance Tradeoff

Figure 1 plots the distributions of each estimator of β1. Appendix C, especially Table C.6, provides

more details. A consistent estimator should have mean 0.3. Recall that all DGPs use the same 200

simulated preference profiles and that what defers across DGPs is how applicants play the game.

It is evident in the figure that the WTT estimator always has a smaller variance than the other

two. Intuitively, this is because WTT leads to more information being used for estimation.

Figure 1a presents the best-case scenario for the WTT estimator. That is, WTT is exactly

satisfied and we use the maximum possible information (i.e., the complete ordinal preferences). As
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(a) TRS (b) IRR1 (c) IRR2 (d) IRR3

(e) REL1 (f) REL2 (g) REL3 (h) REL4

Figure 1: Estimates based on Weak Truth-Telling, Stability, or Robustness (β1 = 0.3)

Notes: The figures focus on the estimates of the quality coefficient (β1) from three approaches, weakly truth-telling (WTT, the red

solid line), stability (the blue dotted line), and robustness (the purple dashed line). The distributions of the estimates across the 200

simulation samples are reported. A consistent estimator should have mean 0.3. Each subfigure uses the 200 estimates from the 200

simulation samples given a DGP and reports an estimated density based on a normal kernel function. Note that TRS as a DGP

means that every applicant truthfully ranks all colleges; IRR1-3 only include payoff irrelevant skips, while REL1-4 have payoff relevant

mistakes. See Table 8 for more details on the eight DGPs.

expected, the WTT estimator is consistent, so are those based on stability or robustness.

The results from the data containing payoff-irrelevant skips are summarized in Figure 1b–d. As

expected, the stability estimates (the blue dotted line) and the robust estimates (the purple dashed

line) are invariant to payoff-irrelevant skips and stay the same as that those in the TRS DGP. In

contrast, the WTT estimates (the red solid line) are sensitive to the fraction of skippers. Even

when there are 25 percent skippers and 15 percent of applicants violating the WTT assumption

(IRR1), the estimates based on WTT from the 200 samples have mean 0.27 (standard deviation

0.00); in contrast, the estimates from the other two approaches are on average 0.30 (standard

deviation 0.01).

The downward bias in the WTT estimator is intuitive. When applicants skip, they omit colleges

with which they have almost no chance of being matched. For applicants with low priorities,

popular colleges are therefore more likely to be skipped. Whenever a college is skipped, WTT

assumes that it is less preferable than all the ranked colleges. Therefore, many applicants are

mistakenly assumed to dislike popular colleges, which results in a downward bias in the estimator

of β1. In contrast, this bias is absent in the stability and robust estimators: whenever a college

is skipped by an applicant due to its high cutoff, neither the stability nor the robust assumption

assumes the college being less preferable than ranked colleges.

Figures 1e–h consider the DGPs in which applicants make payoff-relevant mistakes. Neither
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WTT nor stability is satisfied (Table 8), and therefore both estimators are inconsistent. However,

the stability estimator is still less biased; the means of the estimates are close to the true value,

ranging from 0.26 to 0.29 (see Table C.6 for more details). In contrast, the means of the WTT

estimates are between 0.17–0.18. As predicted, the robust estimator can tolerate some payoff-

relevant mistakes and results in less-biased estimates, with means between 0.27–0.29.

4.4.2 Mis-Estimated Preferences

A direct consequence of an inconsistent estimator is the mis-estimation of applicant preferences.

Let us consider Schools 10 and 11. The latter is a small school as well as a special school for

disadvantaged students, while the former is neither. For a disadvantaged student (Ti = 1) with

an equal distance to these two schools, the probability that she prefers School 11 to School 10

is exp(11β1+β3+β4)
exp(10β1)+exp(11β1+β3+β4)

. Inserting the true values, (β1, β3, β4) = (0.3, 2, 0), we find that the

probability is 0.91. This is depicted by the straight line in Figure 2. With the same formula,

we calculate the same probability based on the three sets of estimates, and Figure 2 presents the

average estimated probability from each set of estimates across the 200 samples in each DGP.

Figure 2: True and Estimated Probabilities That A Student Prefers School 11 to School 10

Notes: The figure presents the probability that a disadvantaged student (Ti = 1), with an equal distance to both schools, prefers

School 11 to School 10. The true value is 0.91 (the thin solid line), calculated as
exp(11β1+β3+β4)

exp(10β1)+exp(11β1+β3+β4)
. With the same formula,

we calculate the estimations based on the WTT estimates, and the thick solid line presents the average over the 200 simulation samples

in each DGP. Similarly, the dotted line describes those based on the stability estimates; and the dashed line depicts the average estimated

probabilities based on the robust estimates.

When the DGP is TRS, all three identifying assumptions lead to consistent estimators, and

the three estimated probabilities almost coincide with the true value. In IRR1-3, the stability and

robust estimators are still consistent, but the estimated probabilities based on the WTT estimates

(the thick solid line) deviate from the true value significantly. Especially, in IRR3, the WTT

estimates result in a mis-estimation of the preferences of 20% of the applicants. In REL1-4, the
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estimations based on the stability estimates (the dotted line) are still relatively close to the true

value, despite being inconsistent. Moreover, those based on the robust estimates (the dashed line)

are even less biased. The mis-estimation of preferences has direct consequences when one evaluates

counterfactual policies, which we investigate in the next subsection.

4.5 Counterfactual Analysis

Making policy recommendations based on counterfactual analysis is one of the main objectives of

market design research. In the following, we illustrate how some common estimation approaches

lead to mis-predicted counterfactual outcomes, while the estimations based on stability and ro-

bustness yield results close to the truth.

We consider the following counterfactual policy: applicants with Ti = 1 are given priority over

those with Ti = 0, while within each type they are still ranked according to their indices. That is,

given Ti = Ti′ , i is ranked higher by all colleges than i′ if and only if i > i′. One may consider this

as an affirmative action policy if Ti = 1 indicates i being disadvantaged. The matching mechanism

is still the serial dictatorship in which everyone can rank all colleges.

The effects of the counterfactual policy are evaluated by the following four approaches.

(i) True Preferences (with possible mistakes): We use the true coefficients in utility functions to

simulate counterfactual outcomes. Applicants adopt different strategies in each DGP as in

our simulation of data (see Section 4.2). Specifically, DGP TRS requires everyone to submit

a truthful 12-college ROL; the potential skippers omit their never-matched colleges in DGPs

IRR1-3; and in DGPs REL1-4, the skippers additionally omit some colleges with which they

have some chance of being matched.

(ii) Submitted ROLs: One assumes that the submitted ROLs under the existing policy are true

ordinal preferences and that applicants submit the same ROLs even when the existing policy

is replaced by the counterfactual.

(iii) WTT: One assumes that the submitted ROLs represent top preferred colleges in true prefer-

ence order, and therefore applicant preferences can be estimated from the data with WTT as

the identifying condition. Under the counterfactual policy, we simulate applicant preferences

based on the estimates and let applicants submit truthful 12-college lists.

(iv) Stability: We estimate applicant preferences from the data with stability as the identifying

condition. Under the counterfactual policy, we simulate applicant preferences based on the

estimates and let applicants submit truthful 12-college lists.

(v) Robustness: We estimate applicant preferences from the data with the robust approach.

Under the counterfactual policy, we simulate applicant preferences based on the estimates

and let applicants submit truthful 12-college lists.
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When simulating counterfactual outcomes, we use the same 200 simulated samples for estima-

tion. In particular, we use the same simulated {εi,c}c when constructing preference profiles after

preference estimation. By holding constant {εi,c}c, we isolate the effects of different estimators.

To summarize, for each of the 200 simulation samples, we conduct 40 different counterfac-

tual analyses: 8 (DGPs: TRS, IRR1-3, and REL1-4) × 5 (true preferences and 4 counterfactual

approaches: submitted ROLs, WTT, stability , and robustness).

4.5.1 Performance of the Four Approaches to Counterfactual Analysis

We first simulate the true outcomes under the counterfactual policy with the true preferences.

When doing so, we assume applicants make mistakes as they do under the current policy. As shown

above, matching outcome does not change if applicants make payoff-irrelevant skips, although

payoff relevant mistakes would lead to different outcomes.

Take the true counterfactual outcomes as our benchmark, we evaluate how the last four ap-

proaches from two perspectives: predicting the policy’s effects on matching outcomes and welfare.

An informative statistic of a match is the college cutoffs which summarize the joint distribution

of applicant priorities and preferences. Figure 3 shows, given each DGP, how the four approaches

mis-predict the cutoffs under the counterfactual policy. For each college, indexed from 1 to 12, we

calculate the mean of the 200 cutoffs from the 200 simulation samples by using the true preferences

and the other four approaches. The sub-figures then depict the mean differences between the

predicted cutoffs and the true ones.

In Figure 3a, the DGP is TRS, and thus the submitted ROLs coincide with true ordinal

preferences. Consequently, the predicted cutoffs from the submitted-ROLs approach are the true

ones. The other three approaches also lead to almost the same cutoffs.

In Figures 3b–d, corresponding to DGPs IRR1-3, only the stability and robust estimators are

consistent, and indeed they have the smallest mis-prediction relative to the other two. Both of

the estimates based on WTT and submitted ROLs have mis-predictions increasing from IRR1 to

IRR3, and those based on submitted ROLs result in larger biases. Since applicants tend to omit

popular colleges from their lists, both approaches underestimate the demand for these colleges and

thus result in under-predicted cutoffs. The bias is even larger for smaller colleges because they

tend to be skipped more often.

When the DGPs contain payoff-relevant mistakes (REL1-4), none of the approaches is consistent

(Figures 3e–h). However, the stability and robust estimates seem to have the negligible mis-

prediction relative to the other two.

Figure 4 further shows how each of the four approaches mis-predicts individual outcomes.

Because the counterfactual policy is intended to help applicants with Ti = 1, we look at these two

groups, Ti equals to 1 or 0, separately.

In Figure 4a, among the Ti = 1 applicants, the stability approach incorrectly predicts the

match of 5 percent of them on average, whenever stability is satisfied (in DGPs TRS and IRR1-3).

Among REL1-4, the fraction of mis-prediction based on stability increases from 6 to 13 percent.
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(a) TRS (b) IRR1 (c) IRR2 (d) IRR3

(e) REL1 (f) REL2 (g) REL3 (h) REL4

Figure 3: Comparison of the Four Approaches: Biases in Predicted Cutoffs

Notes: The sub-figures present how the predicted cutoffs from each approach differ from the true ones which are simulated based on

true preferences with possible mistakes. Each subfigure corresponds to a DGP. Given a DGP, we simulate the colleges’ cutoffs following

each approach and calculate the mean deviation from the true ones. The X-axis shows the college indices; the Y-axis indicates the

deviation of the predicted cutoffs from the true ones.

(a) Applicants Ti = 1 (b) Applicants Ti = 0

Figure 4: Comparison of the Four Approaches: Mis-predicted Match (Fractions)

Notes: The sub-figures show how each approach to counterfactual analysis mis-predicts matching outcomes under the counterfactual

policy. Given a DGP, we simulate a matching outcome and compare them to the true one which is calculated with true preferences

and possible mistakes. The sub-figures present the average rates of mis-prediction for the two groups of applicants, Ti = 1 and Ti = 0,

across the 200 samples in each DGP. On average, there are 599 (1201) applicants with Ti = 0 (Ti = 1) in a simulation sample.

The WTT approach has a lower mis-prediction rate in TRS, but under-perform than stability in

all other DGPs. The submitted-ROLs approach has the highest mis-prediction rates in all DGPs
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except TRS. Lastly, the robust estimates are almost identical to the stability ones in TRS and

IRR1-3, but perform better in REL1-4. Among the applicants with Ti = 0 (subfigure b), the

comparison of the four approaches follows the same pattern.

(a) Applicants Ti = 1: (Fraction Better off)−(Fraction Worse off)(b) Applicants Ti = 0: (Fraction Better off)−(Fraction Worse off)

Figure 5: Comparison of the Four Approaches: Mis-predicting Welfare Effects

Notes: The sub-figures show how each approach to counterfactual analysis mis-predicts the welfare effects of the counterfactual policy

for the two groups of applicants, Ti = 1 and Ti = 0. Given a DGP, we simulate matching outcomes, calculate welfare effects, and

compare them to the true one which is calculated with true preferences and possible mistakes. Welfare effects are measured by the

difference between the fraction of applicants better off and that of those worse off, averaged over the 200 samples in each DGP. On

average, there are 599 (1201) applicants with Ti = 0 (Ti = 1) in a simulation sample. The estimated fraction of applicants with Ti = 1

being worse off is close to zero in all cases, so is the estimated fraction of applicants with Ti = 0 being better off. There are some

applicants whose welfare does not change; simulated with true preferences, this fraction is 9 percent among the Ti = 1 applicants and

32 percent among the Ti = 0 ones. See Tables C.7 and C.8 in Appendix C for more details.

We now investigate the welfare effects on the Ti = 1 applicants and others when the current

policy is replaced by the counterfactual one. Given a simulation sample and a DGP, we compare

the outcomes of each applicant under the two policies. If the applicant is matched with a “more-

preferred” college according to the true/estimated preferences, she is better off; she is worse off

if she is matched with a “less-preferred” one. Because each approach to counterfactual analysis

estimates applicant preferences in a unique way, applicant’s utility associated with a given college

is estimated at a different value under each approach. Therefore, measured welfare effects of the

counterfactual policy may differ even when an applicant is matched with the same college.

Figure 5 shows the difference between the fraction of applicants better off and that of those

worse off, averaged across the 200 simulation samples.23 In Figure 5a, among the Ti = 1 applicants,

the predictions based on the stability or robust estimates are almost identical to the true value,

even in the cases with payoff-relevant mistakes (REL1-4). In contrast, the WTT approach is close

to the true value only in DGPs TRS and IRR 1; those based on submitted ROLs tend to be biased

23There are some applicants whose outcomes do not change. See Tables C.7 and C.8 in Appendix C for more

detailed summary statistics.
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towards to zero effect when there are more applicants skipping or making mistakes.

The results for applicants with Ti = 0 are collected in Figure 5b. The general patterns remain

the same, although the stability and robust estimates are more biased in REL1-4 than in Figure 5a.

In summary, estimated welfare effects are biased towards zero for all applicants when we assume

WTT or take submitted ROLs as true preferences. The stability estimates, however, are very close

to the true value; even when there are some payoff-relevant mistakes, the estimates are much less

biased than the other two. The robust approach further improves upon the stability estimates

when there are payoff-relevant mistakes.
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A Additional Details on Victorian Tertiary Admission

A.1 Courses

Victorian clearinghouse, Victorian Tertiary Admissions Centre (VTAC), processes applications

both for undergraduate and for technical and further education (TAFE) courses. Undergraduate

courses include bachelor degrees as well as a variety of diplomas and certificates. An applicant

lists all types of those courses in a single ROL.

An excerpt of an undergraduate course description from VTAC guide—the main publication

of the clearinghouse—is given below:

Communication

Monash Uni, Berwick: 26111 (CSP), 26112 (Fee), 26113 (Int. Fee)

Title and length: Bachelor of Communication: FT3, PTA.

About the course: [. . . ]

Major studies: [. . . ]

Prerequisites: Units 3 and 4 – a study score of at least 25 in English (any).

Selection mode: CY12: ENTER and two-stage process with a middle-band of approximately 20%.

NONY12: Academic record including GPA (see institutional page) and form. See Extra requirements

for specifics.

Middle-band: Completing any of classical societies and cultures, geography, history (any), interna-

tional politics: international studies, international politics: national politics, literature, LOTE (any)

or media studies = an aggregate 2 points higher per study, to a maximum 6 points; SEAS.

Extra requirements: [. . . ]

We treat two courses as offering the same program and differing only by the fee if the course

code shares the first four digits (which implies that the courses also share the description given

above). The course above is offered in three varieties: as a CSP, or reduced-fee, course; as a full-fee

course; and as a course for international applicants. We are interested in the first two varieties.

Although the majority of the applicants are ranked by the course according to ENTER, this course

rank 20% of its applicants (see “Selection mode”) based on the performance in specific courses

listed in the “Middle-band” section. It also re-ranks the affirmative-action (SEAS) applicants.

Most courses re-rank affirmative action applicants; whether a course re-ranks the applicants based

on other criteria varies, and the criteria may be less specific. A small number of courses, such as

those in performing arts, require a portfolio, an audition, or an interview. CY12 refers to current

year 12 applicants (the focus of our study, category V16 applicants, is part of CY12) and NONY12

refers to non-year 12 applicants.

To determine a cutoff of a course, we select bottom 5% of accepted applicants and top 5%

of rejected applicants and then take a median ENTER of applicants in this selection. Usually,

the number of rejected applicants is about twice as large as the number of accepted applicants.

Thus such a selection over-weights rejected applicants. Furthermore, we do not observe special

consideration applicants; the bottom 5% of accepted applicants are more likely to come from this
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pool. Overall, these applicants often have lower scores than the top 5% rejected. Only cutoffs of

reduced-fee courses are used in the paper, as the number of accepted and rejected applicants for

full-fee courses is too small.

A.2 Applicants

There are multiple categories of applicants; we focus on the category “V16”, who are the most

typical high school graduate in Victoria. They follow the standard state curriculum and do not

have any tertiary course credits to claim. Two other categories are also of interest to us: “V14” and

“V22”. The former are Victorian applicants who follow International Baccalaureate curriculum,

while the latter are interstate applicants. These two categories must be evaluated in the same way

as V16 by the admission officers. We use them to derive course cutoffs more precisely. We do not

use them in the estimations because they miss some control variables that we use. Table A.1 gives

relative frequencies of these categories of applicants. Among V16 applicants, 27922 fill less than

12 courses; they form our main sample.

Table A.1: Categories of Applicants

All CY12 NONY12

V16 V14 and V22 Other CY12

Total 74,704 37,266 4,103 9,275 24,060

% of Total 100.00 49.89 5.49 12.42 32.21

Applicants have easy access to the following information: Clearly-in ENTER, Fringe ENTER,

% of Offers Below Clearly-in ENTER (all three are available for Round 1 and Final Round), as

well as Final Number of Offers (CY12 and Total). Clearly-in ENTER refers to the cutoff above

which every eligible applicant must be admitted; Fringe ENTER refers to 5% percentile of the

scores of admitted applicants. Note that this cutoff statistic does not distinguish between CY12

and NONY12 applicants; for that reason, we do not use any of these cutoffs to determine payoff-

relevance of mistakes.

Even if an applicant skips a feasible RF course (that is, applicant’s ENTER is above the course

cutoff), the skipping mistake may not be payoff relevant: the applicant may have been admitted

to a course that the applicant prefers. Thus, to determine whether the mistake is payoff-relevant,

we need to complete the ROL of an applicant by adding back the skipped RF course. We report

the lower and upper bounds on the number of payoff relevant mistakes.

For the lower bound, we assume that skipped RF course is the least desirable among acceptable

RF courses. Specifically, a skip is considered payoff-relevant if (i) an applicant does not receive an

offer from any RF course; (ii) receives an offer from an FF course; (iii) does not list the RF course

corresponding to the FF course being offered (the course with the same code except for the last

digit); and (iv) the RF course is feasible for this applicant. For the upper bound, we assume that
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skipped RF course is the most desirable. Specifically, a skip is considered payoff-relevant if (i) an

applicant lists FF course; (ii) does not list a corresponding RF course; and (iii) the RF course is

feasible.

The summary statistics for all applicants, applicants with skips and applicants with payoff

relevant mistakes are presented in table A.2.

Table A.2: Summary statistics for applicants by their mistake status

All w/Skip w/Mistake

ENTER 65.77 61.84 78.21

GAT 61.94 59.03 66.44

Female 0.57 0.53 0.59

ln(income) 0.0024 0.0036 -0.0098

Citizen 0.98 0.95 0.94

Perm. resident 0.02 0.04 0.05

Born in

Australia 0.90 0.85 0.86

Southern and Central Asia 0.01 0.04 0.06

Language spoken at home

English 0.91 0.86 0.88

Eastern Asian Languages 0.02 0.04 0.06

Number of FF courses in ROL 0.22 2.40 2.93

Attends high school with tuition fees >AUD9000 0.16 0.27 0.34

Total 27,922 1,009 201

Notes: ‘‘All” refers to all V16 applicants who list fewer than 12 courses. “Mistake” refers to a payoff-relevant mistake. Numbers for

citizenship status, country born and language spoken at home do not sum up to 100 as some entries have been omitted.
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A.3 Expected ENTER

With the information on GAT, we predict ENTER using the following model, which is a second-

order polynomial in the three parts of GAT:

ENTER∗i =a0

+ a11 GAT1i + a12 GAT12
i + a13 GAT13

i

+ a21 GAT2i + a22 GAT22
i + a23 GAT23

i

+ a31 GAT3i + a32 GAT32
i + a33 GAT13

3

+ a1×2 GAT1i ×GAT2i + a1×3 GAT1i ×GAT3i + a2×3 GAT2i ×GAT3i

+ a12×2 GAT12
i ×GAT2i + a12×3 GAT12

i ×GAT3i

+ a1×22 GAT1i ×GAT22
i + a1×32 GAT11

i ×GAT32
i + a22×3 GAT22

i ×GAT3i

+ a1×32 GAT1i ×GAT32
i

+ εi, (A.1)

where GAT1, GAT2 and GAT3 are the results of three parts of GAT test (written communication;

mathematics, science and technology; humanities, the arts and social sciences). Because ENTER

is always in (0, 100), we apply a tobit model to take into account the lower and upper bounds. In

effect, we assume εi ∼ N(0, σ2). The estimated coefficients from the Tobit model are reported in

Table A.3.

Table A.3: Estimation of the Model for Predicting ENTER

Variable Coefficient Variable Coefficient Variable Coefficient Variable Coefficient

GAT1 -2.48∗∗∗ GAT12 ×GAT2 -0.00∗∗ GAT22 0.17∗∗∗ GAT3 -1.32∗∗∗

(0.17) (0.00) (0.01) (0.28)

GAT12 0.09∗∗∗ GAT12 ×GAT3 -0.00 GAT23 -0.00∗∗∗ GAT32 0.07∗∗∗

(0.01) (0.00) (0.00) (0.01)

GAT13 -0.00∗∗∗ GAT1×GAT22 -0.00∗∗ GAT2×GAT3 -0.04∗∗∗ GAT33 -0.00∗∗∗

(0.00) (0.00) (0.01) (0.00)

GAT1×GAT2 0.03∗∗ GAT1×GAT32 -0.00∗∗∗ GAT22 ×GAT3 -0.00∗∗∗ Constant 57.41∗∗∗

(0.01) (0.00) (0.00) (0.85)

GAT1×GAT3 0.06∗∗∗ GAT2 -3.30∗∗∗ GAT2×GAT32 0.00∗∗∗ σ 13.73∗∗∗

(0.01) (0.27) (0.00) (0.05)

N 37,221 Pseudo R2 0.10

Notes: This table reports the estimation results of the Tobit model (Equation A.1). Standard errors are in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.

With the estimated coefficients, we generate an expected/predicted ENTER for every applicant.

The coefficient of correlation between the real ENTER and the expected ENTER is 0.7745.

41



B Proofs from Section 3

Proof of Theorem 1. Recall the cardinal type θ = (u, s) induces an ordinal preference type (ρ(u), s).

Recall that the strategy R̂(θ) depends on u only through ρ̂(u), without loss we can work in terms of

the “projected” ordinal type (ρ, s). Also recall that the mechanism depends only on an applicant’s

ROL and her score. Hence, for the current proof, we shall abuse the notation and call θ := (ρ, s) an

applicant’s type, redefine the type space Θ := R× [0, 1]C (the projection of the original types), and

let η be the measure of the projected types (which is induced by the original measure on (u, s)).

The continuum economy E = [η, S] is redefined in this way. Likewise the k-random economies

F k = [ηk, S] are similarly redefined. Given this reformulation, it suffices to show that it is a robust

equilibrium for each type θ ∈ Θδ to adopt TRS and for each type θ 6∈ Θδ to randomize between

TRS with probability γ and r̂(θ) with probability 1− γ.

We first make the following preliminary observations.

Claim 1. Given the continuum economy E = [η, S], let η̂ denote the measure of “reported” types

when the applicants follow the prescribed strategies, and let Ê = [η̂, S] denote the “induced” con-

tinuum economy under that strategies. Then, Ê has the unique stable matching identical to that

under E, characterized by the identical cutoffs P ∗. The demand under that economy D̂(·) is C1 in

the neighborhood of P ∗ and has ∂D̂(P ∗) = ∂D(P ∗), which is invertible.

Proof. Let D(ρ,s)(P ∗) be the college an applicant with type θ = (ρ, s) demands given cutoffs P ∗

(i.e., her most preferred feasible college given P ∗). Since r̂ ranks her favorite feasible college ahead

of all other feasible colleges, it must be that D(r̂(ρ,s),s)(P ∗) = D(ρ,s)(P ∗) for each type (u, s). It then

follows that D̂(P ∗) = D(P ∗), where D̂(P ) is the demand at the continuum economy Ê = [η̂, S].

Hence, P ∗ also characterizes a stable matching in Ê. Further, since η has full support and since

the prescribed strategy has every type θ play TRS with positive probability, the induced measure

η̂ must also have full support.24 By Theorem 1-i of AL, then the cutoffs P ∗ characterize a unique

stable matching at economy Ê. Finally, observe that, for any P with ||P − P ∗|| < δ, each type

θ 6∈ Θδ has the same set of feasible colleges when the cutoffs are P as when they are P ∗. This

means that for any such type (ρ, s) and for any P in the set, D(r̂(ρ,s),s)(P ) = D(ρ,s)(P ). The last

statement thus follows.

Claim 2. Let P̂ k be the (random) cutoffs characterizing the DA assignment in the F k when the

applicants follow the prescribed strategies. Then, for any δ, ε′ > 0, there exists K ∈ N such that

for all k > K,

Pr{||P̂ k − P ∗|| < δ} ≥ 1− ε′.

Proof. Let η̂k be the measure of “stated” types (r̂(ρ), s) under k-random economy F k when the

applicants follow the prescribed strategies. Let F̂ k = [η̂k, S] be the resulting “induced” k-random

24Throughout, we implicitly assume that a law of large numbers applies. This is justified by focusing on an

appropriate probability space as in Sun (2006). Or more easily, we can assume that the applicants are coordinating

via asymmetric strategies so that exactly γ fraction of each type plays TRS.
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economy. By construction, F̂ k consists of k independent draws of applicants according to measure

η̂, so it is simply a k-random economy of Ê. Since by Claim 1, η̂ has full support, D̂(·) is C1 in

the neighborhood of P ∗ and ∂D̂(P ∗) is invertible, by Proposition 3-2 of AL, for each ε′ > 0, there

exists K ∈ N such that for all k > K, cutoffs P̂ k of any stable matching of Êk—and hence the DA

outcome of F k under the prescribed strategies—satisfy

Pr{||P̂ k − P ∗|| < δ} ≥ 1− ε′.

We are now in a position to prove Theorem 1. Fix any ε > 0. Take any ε′ > 0 such that

ε′(u−u) ≤ ε. By Claim 2, there exists K ∈ N such that for all k > K, Pr{||P̂ k−P ∗|| < δ} ≥ 1−ε′,
where P̂ k are the cutoffs associated with the DA matching in F k under the prescribed strategies.

Let Ek denote this event. We now show that the prescribed strategy profile forms an interim

ε-Bayesian Nash equilibrium for each k-random economy for k > K.

First, for any type θ ∈ Θδ the prescribed strategy, namely TRS, is trivially optimal given the

strategyproofness of DA. Hence, consider an applicant with any type θ 6∈ Θδ, and suppose that

all other applicants employ the prescribed strategies. Now condition on event Ek. Recall that the

set of feasible colleges is the same for type θ 6∈ Θδ when the cutoffs are P̂ k as when they are P ∗,

provided that ||P̂ k − P ∗|| < δ. Hence, given event Ek, strategy r̂(θ) is a best response—and hence

the prescribed mixed strategy—attains the maximum payoff for type θ 6∈ Θδ.

Of course, the event Ek may not occur, but its probability is no greater than ε′ for k > K, and

the maximum payoff loss in that case from failing to play her best response is u − u. Hence, the

payoff loss she incurs by playing the prescribed mixed strategy is at most

ε′(u− u) < ε.

This proves that the sequence of strategy profiles for the sequence {F k} of k-random economies

forms a robust equilibrium.

Proof of Theorem 2. For any sequence {F k} induced by E, fix any arbitrary regular robust equi-

librium {(σk1≤i≤k)}k. The strategies induce a random ROL, Ri, for each player i, and (random)

per capita demand

Dk (P ) :=

(
1

k

k∑
i=1

I

{
c ∈ arg max

w.r.t. Rki

{c′ ∈ C : si,c′ ≥ Pc′}
})

c∈C

,

where the set {c′ ∈ C : si,c′ ≥ Pc′} is the set of feasible colleges for applicant i with respect to the

cutoff P and I{·} is an indicator function equal to 1 if {·} holds and 0 otherwise. (Note that the

random ROLs Ri’s are suppressed as arguments of Dk (P ) for notational ease.) Let P k be the

(random) cutoffs, satisfying Dk(P k) = Sk.
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Let D̄k (P ) := E(R1,...,Rk)

[
Dk (P )

]
, where the randomness is taken over the random draws of

the types of the applicants and the random reported ROLs according to mixed strategy profile(
σki
)

1≤i≤k.

As a preliminary step, we establish a series of claims.

Claim 3. Fix any P . Then, for any α > 0,

Pr
[∥∥Dk (P )− D̄k (P )

∥∥ >√|C|α] ≤ |C| · e−2kα2

.

Proof. First by McDiarmid’s theorem, for each c ∈ C,

Pr{|Dk
c (P )− D̄k

c (P )| > α} ≤ e−2kα2

,

since for each c ∈ C, |Dk
c (P )(R1, ..., Rk) − Dk

c (P )(R′1, ..., R
′
k)| ≤ 1/k whenever (R1, ..., Rk) and

(R′1, ..., R
′
k) differ only in one component.

It then follows that

Pr
[∥∥Dk (P )− D̄k (P )

∥∥ >√|C|α]
≤ Pr

[
∃ c ∈ C s.t.

∣∣Dk
c (P )− D̄k

c (P )
∣∣ > α

]
≤ |C| · e−2kα2

.

Claim 4. The sequence of functions
{
Dk (·)

}
k

are equicontinuous (in the class of normalized

demand functions across all k = 1, ..).

Proof. Fix ε > 0 and P ∈ [0, 1]C .

We want to find δ > 0 (which may depend on ε and P ) s.t.∥∥D̄k (P ′)− D̄k (P )
∥∥ < ε

for all P ′ ∈ [0, 1]C with ‖P ′ − P‖ < δ and all k.

Define

ΘP,P ′ :=

{
(u, s) ∈ Θ :

∃ c ∈ C s.t. sc is weakly greater than

one and only one of Pc and P ′c

}
.

We can find δ > 0 s.t. η (ΘP,P ′) < ε/
√
|C| for all P ′ s.t. ‖P ′ − P‖ < δ. This can be guaranteed

if we assume the measure η to be absolutely continuous w.r.t. Lebesgue measure.
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Then we have∥∥D̄k (P ′)− D̄k (P )
∥∥

=

√∑
c∈C

|E [Dk
c (P ′)−Dk

c (P )]|2

=

√√√√√∑
c∈C

∣∣∣∣∣∣E
1

k

k∑
i=1

 I
{
c ∈ arg maxRki {c

′ ∈ C : si,c′ ≥ P ′c′}
}

−I
{
c ∈ arg maxRki {c

′ ∈ C : si,c′ ≥ Pc′}
} ∣∣∣∣∣∣

2

≤

√√√√√∑
c∈C

E
∣∣∣∣∣∣1k

k∑
i=1

 I
{
c ∈ arg maxRki {c

′ ∈ C : si,c′ ≥ P ′c′}
}

−I
{
c ∈ arg maxRki {c

′ ∈ C : si,c′ ≥ Pc′}
} ∣∣∣∣∣∣

2

≤ 1

k

√√√√√∑
c∈C

E k∑
i=1

∣∣∣∣∣∣ I
{
c ∈ arg maxRki {c

′ ∈ C : si,c′ ≥ P ′c′}
}

−I
{
c ∈ arg maxRki {c

′ ∈ C : si,c′ ≥ Pc′}
} ∣∣∣∣∣∣
2

≤ 1

k

√√√√∑
c∈C

(
E

k∑
i=1

I {θi ∈ ΘP,P ′}

)2

≤ 1

k

√∑
c∈C

(k · η (ΘP,P ′))
2

=
√
|C|η (ΘP,P ′) < ε,

where the first inequality follows Jensen, and the third inequality is because the two sets {c′ ∈ C : si,c′ ≥ P ′c′}
and {c′ ∈ C : si,c′ ≥ Pc′} are indentical when θi /∈ ΘP,P ′ .

Claim 5. The sequence of functions
{
D̄k
}∞
k=1

has a subsequence that converges uniformly to some

continuous function D̄.

Proof. Because the sequence of functions
{
D̄k
}∞
k=1

defined on a compact set [0, 1]C are uni-

formly bounded and equicontinuous (by Claim 4), by Arzela-Ascoli theorem, we can find a sub-

subsequence
{
D̄kj
}∞
j=1

uniformly convergent to some continuous function D̄.

Claim 6. For any ε′ > 0, there exists a subsequence
{
D̄k`
}∞
`=1

such that lim`→∞ Pr{supP ||Dk`(P )−
D̄(P )|| > ε′} = 0.

Proof. Using the argument in the proof of Glivenko-Cantelli, we can partition the space of P ’s

into finite intervals Πi1,...,iC [Pij , Pij+1], where ij = 0, ..., i∗j such that ||D̄(Pi+1)− D̄(P−i )|| < ε′/2 for

all i = (i1, ..., iC), where i + 1 := (i1 + 1, ..., iC + 1). Let m be the number of such intervals. Using

the argument of Glivenko-Cantelli, one can show that for any P there exists i such that

||Dk`(P )− D̄(P )|| ≤ max{||Dk`(Pi)− D̄(Pi)||, ||Dk`(Pi+1)− D̄(Pi+1)||}+ ε′/2.

Suppose event ||Dk`(P ) − D̄(P )|| > ε′ occurs for some P . Then there must exist i such that

||Dk`(Pi)− D̄(Pi)|| ≥ ε′/2. Since D̄k`(·) converges to D̄(·) in sup norm by Claim 5, there exists K ′

such that for all ` > K ′, supP ||D̄k`(P )− D̄(P )|| < ε′/4. Hence, for ` > K ′ and for i, we must have

||Dk`(Pi)− D̄k`(Pi)|| ≥ ε′/4.
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Combining the arguments so far, we conclude:

Pr{sup
P
||Dk`(P )− D̄(P )|| > ε′}

= Pr{∃P s.t. ||Dk`(P )− D̄(P )|| > ε′}
≤Pr{∃i s.t. ||Dk`(Pi)− D̄(Pi)|| > ε′/2}
≤Pr{∃i s.t. ||Dk`(Pi)− D̄k`(Pi)|| > ε′/4}
= Pr{∪i{||Dk`(Pi)− D̄k`(Pi)|| > ε′/4}}

≤
∑
i

Pr{||Dk`(Pi)− D̄k`(Pi)|| > ε′/4}

≤
∑
i

e−k`ε
′2/8

=me−k`ε
′2/8 → 0 as `→∞,

where the penultimate inequality follows from Claim 3.

Now we are in a position to prove Theorem 2.

Suppose to the contrary that the sequence of strategy profiles
{(
σki
)

1≤i≤k

}
k

are not asymptot-

ically stable. Then by definition, there exists ε > 0 and a subsequence of finite economies
{
F kj
}
j

such that

Pr
(
The fraction of applicants playing SRS against P kj ≥ 1− ε

)
< 1− ε. (∗)

By Claim 6, we know that there exists a sub-subsequence Dkjl that converges to D̄ uniformly

in probability. Given the regularity of the strategies employed by the applicants along with the full

support assumption, D̄ is C1 and ∂D̄ is invertible. Hence (using an argument by AL), we know

that P kjl converges to P̄ in probability, where P̄ is a deterministic cutoff s.t. D̄
(
P̄
)

= S.

Define

Θ̂ := {(u, s) : |uc − uc′ | > δ for all c 6= c′} ∩
{

(u, s) :
∣∣sc − P̄c∣∣ > δ

}
.

Let’s take δ to be small enough s.t. η
(

Θ̂
)
> (1− ε)1/3 (this can be done since η is absolutely

continuous).

By WLLN, we know that ηkjl
(

Θ̂
)

converges to η
(

Θ̂
)

in probability, and therefore there exists

L1 s.t. for all l > L1 we have

Pr
(
ηkjl

(
Θ̂
)
≥ (1− ε)1/2

)
≥ (1− ε)1/2 .

For each economy F kjl , define the event

Akjl :=
{∣∣∣P kjl

c − P̄c
∣∣∣ < δ for all c ∈ C

}
.

Because P kjl converges to P̄ in probability, there exists L2 s.t. for all l > L2 we have

Pr
(
Akjl

)
≥ max

{
(1− ε)1/6 , 1− (1− ε)1/2

[
(1− ε)1/3 − (1− ε)1/2

]}
. (∗∗)
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Because
{(
σki
)

1≤i≤k

}
k

is a robust equilibrium, there exists L3 s.t. for all l > L3 the strategy

profile
(
σ
kjl
i

)kjl
i=1

is a δ
[
(1− ε)1/6 − (1− ε)1/3

]
-BNE for economy F kjl .

By WLLN, there exists L̂ s.t. L̂ i.i.d. Bernouli random variables with p = (1− ε)1/3 have a

sample mean greater than (1− ε)1/2 with probability no less than (1− ε)1/3. Then we find L4 s.t.

l > L4 implies (1− ε)1/2 kjl > L̂.

Now let’s fix an arbitrary l > max {L1, L2, L3, L4}, and we wish to show that in economy F kjl

Pr
(
The fraction of applicants playing SRS against P kjl ≥ 1− ε

)
≥ 1− ε,

which would contradict (∗) and complete the proof.

First, notice that in economy F kjl , an applicant with θ ∈ Θ̂ plays SRS against P̄ with probability

no less than (1− ε)1/3. To see this, suppose by contrary that there exists some applicant i and

some type θ ∈ Θ̂ s.t.

Pr
(
σ
kjl
i (θ) plays SRS against P̄

)
< (1− ε)1/3 .

Then deviating to TRS will give this applicant i with type θ at least a gain of

δ · Pr
(
σ
kjl
i (θ) does not play SRS against P kjl

)
≥ δ · Pr

(
σ
kjl
i (θ) does not play SRS against P̄

and event Akjl

)
≥ δ

[
Pr
(
Akjl

)
− Pr

(
σ
kjl
i (θ) plays SRS against P̄

)]
≥ δ

[
(1− ε)1/6 − (1− ε)1/3

]
,

which contradicts the construction of L3, which implies that the strategy profile
(
σ
kjl
i

)kjl
i=1

is a

δ
[
(1− ε)1/6 − (1− ε)1/3

]
-BNE for the economy F kjl .

Therefore, in economy F kjl , for each applicant i = 1, . . . , kjl and each θ ∈ Θ̂, we have

Pr
(
σ
kjl
i (θ) plays SRS against P̄

∣∣∣ ηkjl (Θ̂
)
≥ (1− ε)1/2

)
= Pr

(
σ
kjl
i (θ) plays SRS against P̄

)
≥ (1− ε)1/3 , (***)

where the first equality holds because applicant i’s random report according to her mixed strategy

is independent of random draws of the applicants’ type.

47



Then we have

Pr

(
The fraction of applicants with θ ∈ Θ̂

playing SRS against P̄ ≥ (1− ε)1/2

∣∣∣∣∣ ηkjl (Θ̂
)
≥ (1− ε)1/2

)

≥ Pr

(
ηkjl

(
Θ̂
)
· kjl i.i.d. Bernoulli random variables with p = (1− ε)1/3

have a sample mean no less than (1− ε)1/2

∣∣∣∣∣ ηkjl (Θ̂
)
≥ (1− ε)1/2

)

≥ Pr

(
L̂ i.i.d. Bernoulli random variables with p = (1− ε)1/3

have a sample mean no less than (1− ε)1/2

)
≥ (1− ε)1/3 ,

where the first inequality is because of the inequality (***) and that σi’s are independent across

applicants conditioning on the event ηkjl
(

Θ̂
)
≥ (1− ε)1/2, and the second inequality is because

l > L4 and ηkjl
(

Θ̂
)
≥ (1− ε)1/2 imply ηkjl

(
Θ̂
)
· kjl > L̂.

Comparing the finite economy random cutoff P kjl with the deterministic cutoff P̄ , we have

Pr

(
The fraction of applicants with θ ∈ Θ̂

playing SRS against P kjl ≥ (1− ε)1/2

∣∣∣∣∣ ηkjl (Θ̂
)
≥ (1− ε)1/2

)

≥ Pr

 The fraction of applicants with θ ∈ Θ̂

playing SRS against P̄ ≥ (1− ε)1/2 ,

and event Akjl

∣∣∣∣∣∣∣ ηkjl
(

Θ̂
)
≥ (1− ε)1/2


≥ Pr

(
The fraction of applicants with θ ∈ Θ̂

playing SRS against P̄ ≥ (1− ε)1/2

∣∣∣∣∣ ηkjl (Θ̂
)
≥ (1− ε)1/2

)
− Pr

(
Ākjl

∣∣ ηkjl (Θ̂
)
≥ (1− ε)1/2

)
≥ (1− ε)1/3 −

Pr
(
Ākjl

)
Pr
(
ηkjl

(
Θ̂
)
≥ (1− ε)1/2

)
≥ (1− ε)1/3 −

(1− ε)1/2
[
(1− ε)1/3 − (1− ε)1/2

]
(1− ε)1/2

= (1− ε)1/2 ,

where the last inequality is because of (**).

The construction of L1 implies Pr
(
ηkjl

(
Θ̂
)
≥ (1− ε)1/2

)
≥ (1− ε)1/2, and so finally we have
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in economy F kjl

Pr
(
The fraction of applicants playing SRS against P kjl ≥ 1− ε

)
≥ Pr


The fraction of applicants with θ ∈ Θ̂

playing SRS against P kjl ≥ (1− ε)1/2

and ηkjl
(

Θ̂
)
≥ (1− ε)1/2


= Pr

(
ηkjl

(
Θ̂
)
≥ (1− ε)1/2

)
· Pr

(
The fraction of applicants with θ ∈ Θ̂

playing SRS against P kjl ≥ (1− ε)1/2

∣∣∣∣∣ ηkjl (Θ̂
)
≥ (1− ε)1/2

)
≥ (1− ε)1/2 · (1− ε)1/2

= 1− ε,

which contradicts (∗).

C Monte Carlo Simulations

This appendix describes how we estimate applicant preferences under each of the three identifying

assumptions, weak truth-telling, stability, and robustness.

We also present additional details of the Monte Carlo simulations. Figure C.1 describes the sim-

ulated spatial distribution of applicants and colleges in one simulation sample; Figure C.2 depicts

the marginal distribution of each college’s cutoffs across 1000 simulations under the assumption

that every applicant always truthfully ranks all colleges.

Furthermore, Tables C.4 and C.5 describe the skipping behaviors and mistakes for applicants

with Ti = 1 and Ti = 0, respectively. Table C.6 shows the mean and standard deviation of the esti-

mates of each coefficient from different approaches; and Tables C.7 and C.8 present more detailed

estimation results of the welfare effects among applicants with Ti = 1 and Ti = 0, respectively.

C.1 Estimation

Our formulation of estimation approaches follows Fack, Grenet, and He (2017) who also provide

more details on the assumptions for identification and estimation.

We first re-write the random utility model (Equation 11) as follows:

ui,c = β1 · c+ β2 · di,c + β3 · Ti · Ac + β4 · Smallc + εi,c

≡ Vi,c + εi,c,∀i = 1, · · · , k and c = 1, . . . , C;

we also define Xi = ({di,c, Ac, Smallc}c, Ti) to denote the observable applicant characteristics and

college attributes; and β is the vector of coefficients, β = (β1, β2, β3, β4). In the following, k = 1800

and C = 12.

Let ui = (ui,1, · · · , ui,C). Following the notations in Section 3, we use σi(ui, si) to denote

applicant i’s pure strategy but on the modified type domain: σi : RC × [0, 1] → R. This is
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because we now allow the utility functions to be on the real line and because we study the serial

dictatorship.

The key for each estimation approach is to characterize the choice probability of each ROL or

each college, where the uncertainty originates from εi,c, because the researcher does not observe

its realization. In contrast, we do observe the realization of Xi, submitted ROLs, and matching

outcomes.

Weak Truth-Telling. We start with formalizing the estimation under the weak truth-telling

(WTT) assumption. If each applicant i submits Ki ≡ |σi| (≤ C) choices, under the assumption

that applicants are weakly truth-telling, σi ranks truthfully i’s top Ki preferred colleges.

The probability of applicant i submitting R = (r1, . . . , r|R|) ∈ R is:

Pr (σi(ui, si) = R | Xi;β)

= Pr
(
ui,r1 > · · · > ui,r|R| > ui,c,∀c /∈ {r1, . . . , r|R|} | Xi;β; |σi(ui, si)| = |R|

)
× Pr (|σi(ui, si)| = |R| | Xi;β) .

Under the assumptions that |σi(ui, si)| is orthogonal to ui,c for all c and that εi,c is a type-I

extreme value, we can focus the choice probability conditional |σi(ui, si)| and obtain:

Pr (σi(ui, si) = R | Xi;β; |σi(ui, si)| = |R|)
= Pr

(
ui,r1 > · · · > ui,r|R| > ui,c,∀c /∈ {r1, . . . , r|R|} | Xi;β; |σi(ui, si)| = |R|

)
=

∏
c∈{r1,...,r|R|}

(
exp(Vi,c)∑

c′�Rc exp(Vi,c′)

)

where c′ �R c indicates that c′ is not ranked before c in R, which includes c itself and the

colleges not ranked in R. This rank-ordered (or “exploded”) logit model can be seen as a series

of conditional logit models: one for the top-ranked college (r1) being the most preferred; another

for the second-ranked college (r2) being preferred to all colleges except the one ranked first, and

so on.

With the proper normalization (e.g., Vi,1 = 0), the model can be estimated by maximum

likelihood estimation (MLE) with the following log-likelihood function:

lnLWTT

(
β | X, {|σi|}i

)
=

k∑
i=1

∑
c ranked in σi

Vi,c −
k∑
i=1

∑
c ranked in σi

ln
( ∑
c′�σic

exp(Vi,c′)
)
.

The WTT estimator, β̂
WTT

, is the solution to maxβ lnLWTT

(
β | X, {|σi|}i

)
.

Stability. We now assume that the matching is stable and explore how we can identify and

estimate applicant preferences. Suppose that the matching is µ(ui, si), which leads to a vector of

cutoffs P (µ). With information on how colleges rank applicants, we can find a set of colleges that
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are ex-post feasible to i, C(si, P (µ)). A college is feasible to i, if i’s score is above the college’s

cutoff.

µ(ui, si), P (µ), and C(si, P (µ)) are all random variables from the researcher’s perspective,

because of the unobserved εi,c. The conditions specified by the stability of µ imply the likelihood

of applicant i matching with s in C(si, P (µ)):

Pr

(
s = µ(ui, si) = arg max

c∈C(si,P (µ))

ui,c|Xi, C(si, P (µ));β

)
.

Given the parametric assumptions on utility functions, the corresponding (conditional) log-

likelihood function is:

lnLST (β | X, C(si, P (µ))) =
k∑
i=1

Vi,µ(ui,si) −
k∑
i=1

ln
( ∑
c′∈C(si,P (µ))

exp(Vi,c′)
)
.

The stability estimator, β̂
ST

, is the solution to maxβ lnLST
(
β | X, {|σi|}i

)
.

A key assumption of this approach is that the feasible set C(si, P (µ)) is exogenous to i. As

shown in Fack, Grenet, and He (2017), it is satisfied when the mechanism is the serial dictatorship

and when there are no peer effects.

Robustness. The robust approach is the same as the stability estimator, except that the feasible

set of each applicant, C(si, P (µ)), is modified to be C(si, P i(µ)), where P i(µ) is such that P i
s(µ) =

Ps(µ) + δ if s 6= µ(i) and P i
s(µ) = Ps(µ) if s = µ(i). In the results we present here, we choose

δ = 50/1800. Recall that the 1800 applicants’ scores are uniformly distributed in [0,1].

By inflating the cutoffs of some colleges, we shrink every applicant’s set of feasible colleges.

Therefore, we increase the probability that i is matched with her most-preferred college in C(si, P (µ)).

We can write down the likelihood function as follows:

lnLRB
(
β | X, C(si, P i(µ))

)
=

k∑
i=1

Vi,µ(ui,si) −
k∑
i=1

ln
( ∑
c′∈C(si,P i(µ))

exp(Vi,c′)
)
.

The stability estimator, β̂
RB

, is the solution to maxβ lnLRB
(
β | X, {|σi|}i

)
.
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Figure C.1: Monte Carlo Simulations: Spatial Distribution of Applicants and Colleges

Notes: This figure shows the spatial configuration of the area considered in the Monte Carlo simulations with 1800 applicants and 12

colleges. The area is within a circle of radius 1. The blue and red circles show the locations of applicants and colleges, respectively,

in one simulation sample. Across samples, the colleges’ locations are fixed, while applicants’ locations are uniformly drawn within the

circle.

Figure C.2: Simulated Distribution of Cutoffs when Everyone is Truth-telling

Notes: Assuming everyone is strictly truth-telling, we calculate the cutoffs of all colleges in each simulation sample. The figure shows

the marginal distribution of each college’s cutoff, in terms of percentile rank (between 0 (lowest) and 1 (highest)). Each curve is an

estimated density based on a normal kernel function. A solid line indicates a small college with 75, instead of 150, seats. The simulation

samples for cutoffs use independent draws of {di,c, εi,c}c and Ti.
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Table C.4: Skips and Mistakes in Monte Carlo Simulations (Percentage Points): Ti = 1 Applicants

Scenarios: Data Generating Processes w/ Different Applicant Strategies

Truthful-Reporting Payoff Irrelevant Payoff Relevant

Strategy Skips Mistakes

TRS IRR 1 IRR 2 IRR 3 REL 1 REL 2 REL 3 REL 4

WTT: Weak Truth-Tellinga 100 73 43 13 14 14 14 14

Matched w/ favorite feasible collegeb 100 100 100 100 96 91 85 80

Skippersc 0 31 63 95 95 96 95 95

By number of skips:

Skipping 11 colleges 0 19 40 62 79 84 87 90

Skipping 10 colleges 0 7 15 22 14 10 8 5

Skipping 9 colleges 0 4 8 11 3 1 0 0

Skipping 8 colleges 0 0 0 0 0 0 0 0

Skipping 7 colleges 0 0 0 0 0 0 0 0

Skipping 6 colleges 0 0 0 0 0 0 0 0

Skipping 5 colleges 0 0 0 0 0 0 0 0

Skipping 4 colleges 0 0 0 0 0 0 0 0

Skipping 3 colleges 0 0 0 0 0 0 0 0

Skipping 2 colleges 0 0 0 0 0 0 0 0

Skipping 1 college 0 0 0 0 0 0 0 0

TRS: Truthful-Reporting Strategyd 100 70 37 5 5 5 5 5

Notes: This table presents the configurations of the eight data generating process (DGPs), similar to Table 8 but only among the

applicants with Ti = 1. Each entry is a percentage averaged over the 200 simulation samples. On average, there are 599 such applicants

in each sample. aAn applicant is “weakly truth-telling” if she truthfully ranks her top Ki (1 ≤ Ki ≤ 12) preferred colleges, where Ki is

the observed number of colleges ranked by i. Omitted colleges are always less-preferred than any ranked college. bA college is feasible

to an applicant, if the applicant’s index (score) is higher than the college’s ex-post admission cutoff. If an applicant is matched with her

favorite feasible college, she cannot form a blocking pair with any college. cGiven that every college is acceptable to all applicants and

is potentially over-demanded, an applicant is a skipper if she does not rank all colleges. dAn applicant adopts the “truthful-reporting

strategy” if she truthfully ranks all available colleges.
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Table C.5: Skips and Mistakes in Monte Carlo Simulations (Percentage Points): Ti = 0 Applicants

Scenarios: Data Generating Processes w/ Different Applicant Strategies

Truthful-Reporting Payoff Irrelevant Payoff Relevant

Strategy Skips Mistakes

TRS IRR 1 IRR 2 IRR 3 REL 1 REL 2 REL 3 REL 4

WTT: Weak Truth-Tellinga 100 91 81 72 72 71 71 71

Matched w/ favorite feasible collegeb 100 100 100 100 99 98 97 95

Skippersc 0 23 48 70 70 70 70 70

By number of skips:

Skipping 11 colleges 0 16 35 52 61 64 65 67

Skipping 10 colleges 0 5 10 14 8 6 5 3

Skipping 9 colleges 0 1 3 4 1 0 0 0

Skipping 8 colleges 0 0 0 0 0 0 0 0

Skipping 7 colleges 0 0 0 0 0 0 0 0

Skipping 6 colleges 0 0 0 0 0 0 0 0

Skipping 5 colleges 0 0 0 0 0 0 0 0

Skipping 4 colleges 0 0 0 0 0 0 0 0

Skipping 3 colleges 0 0 0 0 0 0 0 0

Skipping 2 colleges 0 0 0 0 0 0 0 0

Skipping 1 college 0 0 0 0 0 0 0 0

TRS: Truthful-Reporting Strategyd 100 78 52 30 30 30 30 30

Notes: This table presents the configurations of the eight data generating process (DGPs), similar to Table 8 but only among the

applicants with Ti = 0. Each entry is a percentage averaged over the 200 simulation samples. On average, there are 599 such applicants

in each sample. aAn applicant is “weakly truth-telling” if she truthfully ranks her top Ki (1 ≤ Ki ≤ 12) preferred colleges, where Ki is

the observed number of colleges ranked by i. Omitted colleges are always less-preferred than any ranked college. bA college is feasible

to an applicant, if the applicant’s index (score) is higher than the college’s ex-post admission cutoff. If an applicant is matched with her

favorite feasible college, she cannot form a blocking pair with any college. cGiven that every college is acceptable to all applicants and

is potentially over-demanded, an applicant is a skipper if she does not rank all colleges. dAn applicant adopts the “truthful-reporting

strategy” if she truthfully ranks all available colleges.
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Table C.6: Estimation with Different Identifying Conditions: Monte Carlo Results

DGPs
Identifying Quality (β1 = 0.3) Distance (β2 = −1) Interaction (β3 = 2) Small college (β4 = 0)

Condition mean s.d. mean s.d. mean s.d. mean s.d.

A. Strict Truth-telling (All three approaches are consistent)

TRS

WTT 0.30 0.00 -1.00 0.03 2.00 0.03 0.00 0.02

Stability 0.30 0.01 -1.00 0.09 2.01 0.12 0.00 0.08

Robust 0.30 0.01 -1.00 0.10 2.01 0.14 -0.01 0.08

B. Payoff-irrelevant Skips (Only stability and the robust approach are consistent)

IRR1

WTT 0.27 0.00 -0.93 0.03 1.85 0.04 -0.04 0.02

Stability 0.30 0.01 -1.00 0.09 2.01 0.12 0.00 0.08

Robust 0.30 0.01 -1.00 0.10 2.01 0.14 -0.01 0.08

IRR2

WTT 0.23 0.00 -0.83 0.04 1.58 0.04 -0.10 0.02

Stability 0.30 0.01 -1.00 0.09 2.01 0.12 0.00 0.08

Robust 0.30 0.01 -1.00 0.10 2.00 0.14 -0.01 0.08

IRR3 WTT 0.15 0.01 -0.66 0.05 0.99 0.07 -0.20 0.03

Stability 0.30 0.01 -1.00 0.09 2.01 0.12 0.00 0.08

Robust 0.30 0.01 -1.00 0.10 2.01 0.14 -0.01 0.08

C. Payoff-relevant Mistakes (No approach is consistent)

REL1

WTT 0.17 0.01 -0.69 0.05 1.00 0.07 -0.19 0.03

Stability 0.29 0.02 -0.98 0.09 1.94 0.22 -0.02 0.12

Robust 0.29 0.02 -0.99 0.10 1.96 0.20 -0.03 0.11

REL2

WTT 0.17 0.01 -0.70 0.05 1.00 0.08 -0.18 0.03

Stability 0.28 0.03 -0.96 0.09 1.84 0.30 -0.04 0.14

Robust 0.29 0.02 -0.98 0.10 1.89 0.27 -0.05 0.13

REL3

WTT 0.17 0.01 -0.70 0.05 1.02 0.08 -0.18 0.03

Stability 0.27 0.03 -0.94 0.09 1.77 0.37 -0.06 0.16

Robust 0.28 0.03 -0.96 0.10 1.83 0.33 -0.06 0.15

REL4

WTT 0.18 0.01 -0.71 0.05 1.02 0.08 -0.17 0.03

Stability 0.26 0.04 -0.92 0.10 1.66 0.43 -0.08 0.16

Robust 0.27 0.03 -0.94 0.10 1.74 0.38 -0.08 0.15

Notes: This table presents estimates (mean and standard deviation across 200 samples) of the random utility model described in

equation (11). The true values are (β1, β2, β3, β4) = (0.3,−1, 2, 0), and the coefficient on the small school dummy is zero. It shows

results in the eight data generating process (DGPs) with three identifying assumptions, WTT, stability, and the robust approach. WTT

assumes that every applicant truthfully ranks her top Ki (1 < Ki ≤ 12) colleges, where Ki is the observed number of colleges in i’s

ROL. Stability implies that every applicant is matched with her favorite feasible college, given the ex-post cutoffs. The robust approach

inflates some cutoffs and re-runs the stability estimator.
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Table C.7: Welfare Effects of the Counterfactual Policy on Applicants with Ti = 1

DGP
Approach to Worse Off Better Off Indifferent

Counterfactual mean s.d. mean s.d. mean s.d.

A. Strict truth-telling

Submitted ROLs 0 0 91 1 9 1

WTT 0 0 91 1 9 1

TRS Stability 0 0 91 1 9 1

Robust 0 0 91 1 9 1

Truth 0 0 91 1 9 1

B. Payoff-irrelevant skips

Submitted ROLs 0 0 79 2 21 2

WTT 0 0 91 1 9 1

IRR 1 Stability 0 0 91 1 9 1

Robust 0 0 91 1 9 1

Truth 0 0 91 1 9 1

Submitted ROLs 0 0 65 2 35 2

WTT 0 0 89 1 11 1

IRR 2 Stability 0 0 91 1 9 1

Robust 0 0 91 1 9 1

Truth 0 0 91 1 9 1

Submitted ROLs 0 0 53 3 47 3

WTT 0 0 86 1 14 1

IRR 3 Stability 0 0 91 1 9 1

Robust 0 0 91 1 9 1

Truth 0 0 91 1 9 1

C. Payoff-relevant mistakes

Submitted ROLs 0 0 45 3 55 3

WTT 0 0 87 1 13 1

REL 1 Stability 0 0 91 1 9 1

Robust 0 0 91 1 9 1

Truth 0 0 91 1 9 1

Submitted ROLs 0 0 43 2 57 2

WTT 0 0 87 1 13 1

REL 2 Stability 0 0 91 2 9 2

Robust 0 0 91 1 9 1

Truth 0 0 91 1 9 1

Submitted ROLs 0 0 42 2 58 2

WTT 0 0 87 1 13 1

REL 3 Stability 0 0 90 2 10 2

Robust 0 0 91 2 9 2

Truth 0 0 91 1 9 1

Submitted ROLs 0 0 42 2 58 2

WTT 0 0 87 1 13 1

REL 4 Stability 0 0 90 2 10 2

Robust 0 0 90 2 10 2

Truth 0 0 91 1 9 1

Notes: This table presents the estimated effects of the counterfactual policy (giving Ti = 1 applicants priority in admission) on applicants

with Ti = 1. On average, there are 599 such applicants (standard deviation 14) in each simulation sample. The table shows results in

the eight data generating process (DGPs) with five approaches. The one using submitted ROLs assumes that submitted ROLs represent

applicant true ordinal preferences; WTT assumes that every applicant truthfully ranks her top Ki (1 < Ki ≤ 12) preferred colleges

(Ki is observed); stability implies that every applicant is matched with her favorite feasible college, given the ex-post cutoffs; and the

robust approach inflates some cutoffs and re-runs the stability estimator. The truth is simulated with the possible mistakes in each

DGP. The welfare change of each applicant is calculated in the following way: we first simulate the counterfactual match and investigate

if a given applicant is better off, worse off, or indifferent by comparing the two matches according to estimated/assumed/true ordinal

preferences. In each simulation sample, we calculate the percentage of different welfare change; the table then reports the mean and

standard deviation of the percentages across the 200 simulation samples.
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Table C.8: Welfare Effects of the Counterfactual Policy on Applicants with Ti = 0

DGP
Approach to Worse Off Better Off Indifferent

Counterfactual mean s.d. mean s.d. mean s.d.

A. Strict truth-telling

Submitted ROLs 68 2 0 0 32 2

WTT 68 2 0 0 32 2

TRS Stability 67 2 1 0 32 2

Robust 67 2 1 0 32 2

Truth 68 2 0 0 32 2

B. Payoff-irrelevant skips

Submitted ROLs 55 2 0 0 45 2

WTT 65 2 2 0 33 2

IRR 1 Stability 67 2 1 0 32 2

Robust 67 2 1 0 32 2

Truth 68 2 0 0 32 2

Submitted ROLs 40 2 0 0 60 2

WTT 60 2 5 1 35 2

IRR 2 Stability 67 2 1 0 32 2

Robust 67 2 1 0 32 2

Truth 68 2 0 0 32 2

Submitted ROLs 30 1 0 0 70 1

WTT 47 2 13 1 40 2

IRR 3 Stability 67 2 1 0 32 2

Robust 67 2 1 0 32 2

Truth 68 2 0 0 32 2

C. Payoff-relevant mistakes

Submitted ROLs 26 1 0 0 74 1

WTT 50 2 11 1 39 2

REL 1 Stability 67 3 1 1 32 2

Robust 67 3 1 1 32 2

Truth 68 2 0 0 32 2

Submitted ROLs 25 1 0 0 75 1

WTT 51 2 11 1 38 2

REL 2 Stability 66 3 2 2 32 2

Robust 66 3 2 1 32 2

Truth 67 2 0 0 32 2

Submitted ROLs 24 1 0 0 76 2

WTT 51 2 11 1 38 2

REL 3 Stability 65 4 3 2 33 2

Robust 65 4 2 2 32 2

Truth 67 2 0 0 32 2

Submitted ROLs 23 1 0 0 76 2

WTT 52 2 11 1 37 2

REL 4 Stability 63 5 4 3 33 3

Robust 64 4 3 2 33 2

Truth 67 2 0 0 32 2

Notes: This table presents the estimated effects of the counterfactual policy (giving Ti = 1 applicants priority in admission) on applicants

with Ti = 0. On average, there are 1201 such applicants (standard deviation 14) in each simulation sample. The table shows results in

the eight data generating process (DGPs) with five approaches. The one using submitted ROLs assumes that submitted ROLs represent

applicant true ordinal preferences; WTT assumes that every applicant truthfully ranks her top Ki (1 < Ki ≤ 12) preferred colleges

(Ki is observed); stability implies that every applicant is matched with her favorite feasible college, given the ex-post cutoffs; and the

robust approach inflates some cutoffs and re-runs the stability estimator. The truth is simulated with the possible mistakes in each

DGP. The welfare change of each applicant is calculated in the following way: we first simulate the counterfactual match and investigate

if a given applicant is better off, worse off, or indifferent by comparing the two matches according to estimated/assumed/true ordinal

preferences. In each simulation sample, we calculate the percentage of different welfare change; the table then reports the mean and

standard deviation of the percentages across the 200 simulation samples.
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